Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1385825, 2024.
Article in English | MEDLINE | ID: mdl-38510814

ABSTRACT

[This corrects the article DOI: 10.3389/fchem.2023.1211503.].

2.
Front Chem ; 11: 1211503, 2023.
Article in English | MEDLINE | ID: mdl-37347043

ABSTRACT

Nanomaterials with "yolk and shell" "structure" can be considered as "nanoreactors" that have significant potential for application in catalysis. Especially in terms of electrochemical energy storage and conversion, the nanoelectrode has a large specific surface area with a unique yolk@shell structure, which can reduce the volume change of the electrode during the charging and discharging process and fast ion/electron transfer channels. The adsorption of products and the improvement of conversion reaction efficiency can greatly improve the stability, speed and cycle performance of the electrode, and it is a kind of ideal electrode material. In this research, heterojunction nanoreactors (FZT Y@WDS) Fe3O4@ZrO2-X@TiO2-X were firstly synthesized based on the solvothermal combined hard-template process, partial etching and calcination. The response surface method was used to determine the performance of the FZT Y@WDS heterojunction nanoreactors and the effects of four process factors: naproxen concentration (NAP), solution pH, the amount of charged photocatalyst, and the irradiation time for photocatalytic degradation of NAP under visible light irradiation. To maximize the photocatalytic activity, the parameters of the loaded catalyst, the pH of the reaction medium, the initial concentration of NAP, and the irradiation time were set to 0.5 g/L, 3, 10 mg/L, and 60 min, respectively, resulting in complete removal of NAP and the optimum amount was calculated to be 0.5 g/L, 5.246, 14.092 mg/L, and 57.362 min, respectively. Considering the promising photocatalytic activity of FZT Y@WDS under visible light and the separation performance of the nanocomposite, we proposed this photocatalyst as an alternative solution for the treatment of pharmaceutical wastewater.

3.
Sci Rep ; 12(1): 10388, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725903

ABSTRACT

In this study, ZrO2, TiO2, and Fe3O4 components were synthesized by co-precipitation, sol-gel, and co-precipitation methods, respectively. In addition, solid-state dispersion method was used for synthesizing of ZrO2/TiO2/Fe3O4 ternary nanocomposite. The ZrO2/TiO2/Fe3O4 nanocomposite was characterized by different techniques including XRD, EDX, SEM, BET, FTIR, XPS, EELS, and Photoluminescence (PL). The FTIR analysis of ZrO2/TiO2/Fe3O4 photocatalyst showed strong peaks in the range of 450 to 700 cm-1, which represent stretching vibrations of Zr-O, Ti-O, and Fe-O. The results of FTIR and XRD, XPS analyses and PL spectra confirmed that the solid-state dispersion method produced ZrO2/TiO2/Fe3O4 nanocomposites. The EELS analysis confirmed the pure samples of Fe3O4, TiO2 and ZrO2. The EDAX analysis showed that the Zr:Ti:Fe atomic ratio was 0.42:2.08:1.00. The specific surface area, pores volume and average pores size of the photocatalyst were obtained 280 m2/g, 0.92 cm3/g, and 42 nm respectively. Furthermore, the performance of ZrO2/TiO2/Fe3O4 nanocomposite was evaluated for naproxen removal using the response surface method (RSM). The four parameters such as NPX concentration, time, pH and catalyst concentration was investigated. The point of zero charge of the photocatalyst was 6. The maximum and minimum degradation of naproxen using photocatalyst were 100% (under conditions: NPX concentration = 10 mg/L, time = 90 min, pH = 3 and catalyst concentration = 0.5 g/L) and 66.10% respectively. The stability experiment revealed that the ternary nanocatalyst demonstrates a relatively higher photocatalytic activity after 7 recycles.


Subject(s)
Nanocomposites , Naproxen , Catalysis , Nanocomposites/chemistry , Titanium/chemistry
4.
Environ Sci Pollut Res Int ; 28(41): 57902-57917, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34097214

ABSTRACT

This paper presents an experimental study on continuous adsorptive removal of Cd2+ from the water body using a bio-nanocomposite hydrogel within a fixed-bed column (FBC) system. The bio-nanocomposite hydrogel was synthesized based on starch grafted poly(acrylic acid) (St-g-PAA) reinforced by cellulose nanofibers (CNFs). The effects of processing conditions including pH, flow rate, and initial concentration of Cd2+ on adsorption efficiency were examined. Based on the results, the highest removal efficiency was achieved to be 82.5% at pH of 5, initial concentration of 10 mg L-1, and flow rate of 5 mL min-1. Furthermore, by applying isotherm models, it was uncovered that the Langmuir isotherm model was the most appropriate one, and the maximum adsorption capacity was 40.65 mg g-1. Also, an adsorption process was carried out using the FBC system, and the outcome data were processed using Thomas and Yoon-Nelson models to find the characteristics of the column. In this study, the recovering capacity of the exhausted hydrogel was evaluated. Desorption process efficiencies of batch and continuous operations were obtained to be 91.9% and 90%, respectively.


Subject(s)
Nanofibers , Water Pollutants, Chemical , Water Purification , Acrylic Resins , Adsorption , Cadmium/analysis , Cellulose , Hydrogen-Ion Concentration , Ions , Kinetics , Nanogels , Starch
5.
NPJ Microgravity ; 7(1): 6, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602933

ABSTRACT

In this study, single-bubble electro-hydrodynamic effects on the two-phase laminar flow of water under electric field stress are investigated using numerical modeling. A 2D axisymmetric model is also developed to study the growth and departure of a single bubble. The phase-field method is applied to track the interphase between liquid and gas. The growth of the attached vapor bubble nucleus to a superheat at 7.0 °C and 8.5 °C are evaluated with 50° and 90° contact angles. The results show that the enhancement of the contact angle changes the velocity and temperature fields around the bubble. It is observed that the growing size and base of the bubble is increased with increasing the wall superheat, but the bubble departure diameter and time are decreased. The electric field results in raising the number of detached bubbles from the superheat at a certain time interval but decreasing the bubbles departure size. Additionally, the formation of stretched bubbles enhances the rate of heat flux and there is a non-linear relationship between the applied voltage and heat flux.

6.
Water Sci Technol ; 70(5): 932-8, 2014.
Article in English | MEDLINE | ID: mdl-25225943

ABSTRACT

Recent studies have identified the occurrence of a vast number of pharmaceuticals into the municipal wastewater through excreted urine and feces. Some of these pharmaceutical compounds are degraded in the environment. However, there have been reports on the presence of pharmaceutical active compounds in drinking water. Concerns have been raised over the potential adverse effects of these pharmaceuticals on public health and the aquatic environment. In order to investigate the removal process of pharmaceutical enrofloxacin, a unit consisting of a structured packing rotating biological contactor (spRBC) was designed and constructed as a biological treatment unit. The removal rate reached a maximum of 70% in this biological unit. In the meantime, the effect of photolysis process on the effluent of the biological unit was also studied. In the direct photolysis, the removal performance reached 51% and by adding H2O2 the removal efficiency was increased to 87%. The removal efficiency for the entire system including spRBC and an ultraviolet radiation unit was 94%.


Subject(s)
Fluoroquinolones/metabolism , Photolysis , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Bioreactors , Enrofloxacin , Fluoroquinolones/chemistry , Hydrogen Peroxide , Ultraviolet Rays , Wastewater/analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...