Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 12(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363629

ABSTRACT

Microfluidic paper-based analytical devices (µPADs) are leading the field of low-cost, quantitative in-situ assays. However, understanding the flow behavior in cellulose-based membranes to achieve an accurate and rapid response has remained a challenge. Previous studies focused on commercial filter papers, and one of their problems was the time required to perform the test. This work studies the effect of different cellulose substrates on diffusion-based sensor performance. A diffusion-based sensor was laser cut on different cellulose fibers (Whatman and lab-made Sisal papers) with different structure characteristics, such as basis weight, density, pore size, fiber diameter, and length. Better sensitivity and faster response are found in papers with bigger pore sizes and lower basis weights. The designed sensor has been successfully used to quantify the ionic concentration of commercial wines with a 13.6 mM limit of detection in 30 s. The developed µPAD can be used in quantitative assays for agri-food applications without the need for any external equipment or trained personnel.

2.
Sensors (Basel) ; 21(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34064828

ABSTRACT

Microfluidic paper-based analytical devices (µPADs) are a promising technology to enable accurate and quantitative in situ assays. Paper's inherent hydrophilicity drives the fluids without the need for external pressure sources. However, controlling the flow in the porous medium has remained a challenge. This study addresses this problem from the nature of the paper substrate and its design. A computational fluid dynamic model has been developed, which couples the characteristics of the porous media (fiber length, fiber diameter and porosity) to the fluidic performance of the diffusion-based µPAD sensor. The numerical results showed that for a given porous membrane, the diffusion, and therefore the sensor performance is affected not only by the substrate nature but also by the inlets' orientation. Given a porous substrate, the optimum performance is achieved by the lowest inlets' angle. A diffusion-based self-referencing colorimetric sensor was built and validated according to the design. The device is able to quantify the hydronium concentration in wines by comparison to 0.1-1.0 M tartaric acid solutions with a 41.3 mM limit of detection. This research showed that by proper adjustments even the simplest µPADs can be used in quantitative assays for agri-food applications.

3.
Anal Bioanal Chem ; 413(11): 2867-2878, 2021 May.
Article in English | MEDLINE | ID: mdl-33686478

ABSTRACT

Blood plasma separation from undiluted blood is an essential step in many diagnostic procedures. This study focuses on the numerical optimization of the microfluidic blood plasma separator (BPS) and experimental validation of the results to achieve portable blood plasma separation with high purity and reasonable yield. The proposed design has two parts: a microchannel for blood processing and a tank below the aforementioned main channel for plasma collection. The study uses 3D computational fluid dynamic analysis to investigate the optimal ratio of heights between the top microchannel and the tank and their geometry at various flow rates. Thereafter, the results are compared with the experimental findings of the fabricated devices. These results are contrasted with some recent reported works to verify the proposed device's contribution to the improvement in the quality and quantity of the extracted plasma. The optimized design is capable of achieving a 19% yield with purity of 77.1%, depending on the requirement of the point-of-care (POC) application. These amounts could be tuned, for instance to 100% pure plasma, but the yield would decrease to 9%. In this study, the candidate application is hemostasis; therefore, the BPS is integrated to a biomimetic surface for hemostasis evaluation near the patients.


Subject(s)
High-Throughput Screening Assays/instrumentation , Microfluidic Analytical Techniques/instrumentation , Plasma , Point-of-Care Systems , Biomimetics , Cell Separation/instrumentation , Equipment Design , Humans
4.
Food Chem ; 344: 128583, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33257025

ABSTRACT

A miniaturized 3D-printed device has been designed, manufactured and validated to perform as a low-cost sensor for compositional analysis of buffered and non-buffered solutions in industrial or remote areas. The proposed sensor takes advantage of the transport phenomenon and colorimetric measurements. The novel design can simultaneously detect the ionic strength of the solution by measuring the diffusion width of the ions and the pH by image analysis of the pH indicator color change. The results showed that it can detect pH variations of 0.25 and ionic measure difference of 0.1 M in non-buffer solutions. In addition, the design showed its adaptability to be used as a self-referencing sensor. The 3D-printed sensor presented here is not only successful in the evaluation of some important chemical characteristics but also brings flexibility, cost-effectiveness, swiftness and user-friendliness.


Subject(s)
Colorimetry/methods , Printing, Three-Dimensional , Solutions/chemistry , Color , Colorimetry/instrumentation , Diffusion , Hydrogen-Ion Concentration , Osmolar Concentration
5.
Biofabrication ; 12(2): 025021, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31891916

ABSTRACT

Micro Electro Mechanical Systems (MEMS) and microfluidic devices have found numerous applications in the industrial sector. However, they require a fast, cost-effective and reliable manufacturing process in order to compete with conventional methods. Particularly, at the sub-micron scale, the manufacturing of devices are limited by the dimensional complexity. A proper bonding and stiction prevention of these sub-micron channels are two of the main challenges faced during the fabrication process of low aspect ratio channels. Especially, in the case of using flexible materials such as polydimethylsiloxane (PDMS). This study presents a direct laser microfabrication method of sub-micron channels using an infrared (IR) ultrashort pulse (femtosecond), capable of manufacturing extremely low aspect ratio channels. These microchannels are manufactured and tested varying their depth from 0.5 µm to 2 µm and width of 15, 20, 25, and 30 µm. The roughness of each pattern was measured by an interferometric microscope. Additionally, the static contact angle of each depth was studied to evaluate the influence of femtosecond laser fabrication method on the wettability of the glass substrate. PDMS, which is a biocompatible polymer, was used to provide a watertight property to the sub-micron channels and also to assist the assembly of external microfluidic hose connections. A 750 nm depth watertight channel was built using this methodology and successfully used as a blood plasma separator (BPS). The device was able to achieve 100% pure plasma without stiction of the PDMS layer to the sub-micron channel within an adequate time. This method provides a novel manufacturing approach useful for various applications such as point-of-care devices.


Subject(s)
Equipment Design , Lab-On-A-Chip Devices , Blood Cells/cytology , Blood Cells/physiology , Cell Separation/methods , Dimethylpolysiloxanes/chemistry , Glass/chemistry , Humans , Lasers , Micro-Electrical-Mechanical Systems , Microscopy, Confocal
6.
Lab Chip ; 19(19): 3249-3260, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31478036

ABSTRACT

The blood typing test is mandatory in any transfusion, organ transplant, and pregnancy situation. There is a lack of point-of-care (POC) blood typing that could perform both direct and indirect methods using a single droplet of whole blood. This study presents a new methodology combining a passive microfluidic blood-plasma separator (BPS) and a blood typing detector for the very first time, leading to a stand-alone microchip which is capable of determining the blood group from both direct and indirect methods simultaneously. The proposed design separates blood cells from plasma by applying hydrodynamic forces imposed on them, which overcomes the clogging issue and consequently maximizes the volume of the extracted plasma. An axial migration effect across the main channel is responsible for collecting the plasma in plasma collector channels. The BPS novel design approached 12% yield of plasma with 100% purity in approximately 10 minutes. The portable BPS was designed and fabricated to perform ABO/Rh blood tests based on the detection of agglutination in both antigens of RBCs (direct) and antibodies of plasma (indirect). The differences between agglutinated and non-agglutinated samples were distinguishable by the naked eye and also validated by particle analysis of microscopic pictures. The results of this passive BPS in ABO/Rh blood grouping verified the quality and quantity of the extracted plasma in practical applications.


Subject(s)
ABO Blood-Group System/blood , Antibodies/blood , Blood Grouping and Crossmatching , Microfluidic Analytical Techniques , Point-of-Care Testing , Rh-Hr Blood-Group System/blood , Humans , Microfluidic Analytical Techniques/instrumentation
7.
Micromachines (Basel) ; 9(11)2018 Oct 27.
Article in English | MEDLINE | ID: mdl-30715051

ABSTRACT

A novel type of spiral micromixer with expansion and contraction parts is presented in order to enhance the mixing quality in the low Reynolds number regimes for point-of-care tests (POCT). Three classes of micromixers with different numbers of loops and modified geometries were studied. Numerical simulation was performed to study the flow behavior and mixing performance solving the steady-state Navier⁻Stokes and the convection-diffusion equations in the Reynolds range of 0.1⁻10.0. Comparisons between the mixers with and without expansion parts were made to illustrate the effect of disturbing the streamlines on the mixing performance. Image analysis of the mixing results from fabricated micromixers was used to verify the results of the simulations. Since the proposed mixer provides up to 92% of homogeneity at Re 1.0, generating 442 Pa of pressure drop, this mixer makes a suitable candidate for research in the POCT field.

SELECTION OF CITATIONS
SEARCH DETAIL
...