Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IET Syst Biol ; 16(5): 173-185, 2022 09.
Article in English | MEDLINE | ID: mdl-35983595

ABSTRACT

Alopecia Areata (AA) is characterised by an autoimmune response to hair follicles (HFs) and its exact pathobiology remains unclear. The current study aims to look into the molecular changes in the skin of AA patients as well as the potential underlying molecular mechanisms of AA in order to identify potential candidates for early detection and treatment of AA. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub genes, and mRNA-miRNA regulatory networks associated with AA. Furthermore, Chi2 as a machine-learning algorithm was used to compute the gene importance in AA. Finally, drug-target construction revealed the potential of repositioning drugs for the treatment of AA. Our analysis using four AA data sets established a network strongly correlated to AA pathogenicity based on GZMA, OXCT2, HOXC13, KRT40, COMP, CHAC1, and KRT83 hub genes. Interestingly, machine learning introduced these genes as important in AA pathogenicity. Besides that, using another ten data sets, we showed that CHAC1 could clearly distinguish AA from similar clinical phenotypes, such as scarring alopecia due to psoriasis. Also, two FDA-approved drug candidates and 30 experimentally validated miRNAs were identified that affected the co-expression network. Using transcriptome analysis, suggested CHAC1 as a potential diagnostic predictor to diagnose AA.


Subject(s)
Alopecia Areata , MicroRNAs , Alopecia Areata/diagnosis , Alopecia Areata/genetics , Biomarkers , Gene Expression Profiling , Humans , MicroRNAs/genetics
2.
Iran J Basic Med Sci ; 23(8): 1085-1090, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32952956

ABSTRACT

OBJECTIVES: Potentially preventable death from uncontrolled hemorrhage clearly indicates the importance of simple, fast and efficient ways to achieving hemostasis. The aim of this study was to develop a topical formulation of green tea extract for reducing bleeding that can be helpful in hemorrhage control. MATERIALS AND METHODS: Hydroalcoholic extract of green tea was isolated from Camellia sinensis and formulated in polyvinyl alcohol (PVA) to achieve two concentrations of 2% and 4% v/v. Folin-Ciocalteau assay was used to determine the total amount of tannins in extract. Rheological behavior of solutions was investigated by measuring viscosity at shear rates of 0-200 sec-1. Quantitative and qualitative microbial limit tests and minimum inhibitory concentration (MIC) assay were done. The effect of formulations on bleeding time was evaluated in an animal model. RESULTS: The total amount of tannin in green tea extract was 3.8% w/w and addition of green tea significantly increased the viscosity of PVA. The results of MIC assay showed that PVA could not inhibit the growth of bacteria, while, 716 µg/ml of green tea and 2860 µg/ml of green tea/PVA 4% inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa. In an animal study both 2% and 4% formulations were able to stop hemorrhage approximately at an equal time compared with tranexamic acid (TXA) 50 mg/ml as a control and the lowest bleeding time was 6.4±0.51 sec for green tea/PVA 4%. CONCLUSION: Based on our results, the topical formulation of green tea extract in PVA has a great potential for anti-hemorrhage applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...