Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Pract Neurol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38997136

ABSTRACT

Cryptococcal meningitis is an important global health problem, resulting from infection with the yeast Cryptococcus, especially Cryptococcus neoformans and Cryptococcus gattii, which cause a spectrum of disease ranging from pulmonary and skin lesions to life-threatening central nervous system involvement. The diagnosis and management of cryptococcal meningitis have substantially changed in recent years. Cryptococcal meningitis often occurs in people living with advanced HIV infection, though in high-income countries with robust HIV detection and treatment programmes, it increasingly occurs in other groups, notably solid-organ transplant recipients, other immunosuppressed patients and even immunocompetent hosts. This review outlines the clinical presentation, management and prognosis of cryptococcal meningitis, including its salient differences in people living with HIV compared with HIV-negative patients. We discuss the importance of managing raised intracranial pressure and highlight the advantages of improved multidisciplinary team working involving neurologists, infectious disease specialists and neurosurgeons.

2.
Lancet ; 403(10442): 2376-2377, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38823986
4.
JAMA Neurol ; 81(7): 773-774, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38619846

ABSTRACT

This case report describes a 17-year-old boy with reduced consciousness and T2-weighted hyperintensity, focal diffusion restriction, and microhemorrhages within the deep gray nuclei and surrounding white matter.


Subject(s)
Histiocytic Necrotizing Lymphadenitis , Humans , Histiocytic Necrotizing Lymphadenitis/diagnosis , Histiocytic Necrotizing Lymphadenitis/complications , Male , Female , Adult , Magnetic Resonance Imaging
5.
Neuroscientist ; : 10738584241234049, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462512

ABSTRACT

In the history of neuroscience, Cajal stands tall. Many figures in the late 19th and early 20th centuries made major contributions to neuroscience-Sherrington, Ferrier, Jackson, Holmes, Adrian, and Békésy, to name a few. But in the public mind, Cajal is unique. His application of the Golgi method, with an array of histologic stains, unlocked a wealth of new knowledge on the structure and function of the brain. Here we argue that Cajal's success should not only be attributed to the importance of his scientific contributions but also to the artistic visual language that he created and to his pioneering self-branding, which exploited methods of the artist, including classical drawing and the new invention of photography. We argue that Cajal created his distinctive visual language and self-branding strategy by interweaving an ostensibly objective research product with an intimately subjective narrative about the brain and himself. His approach is evident in the use of photography, notably self-portraits, which furthered broad engagement initially inspired by his scientific drawings. Through his visual language, Cajal made an impact in art and culture far beyond the bounds of science, which has sustained his scientific legacy.

9.
Sci Adv ; 9(16): eabq0651, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37083530

ABSTRACT

Although microglial activation is widely found in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the underlying mechanism(s) are poorly understood. Here, using human-induced pluripotent stem cell-derived microglia-like cells (hiPSC-MG) harboring the most common ALS/FTD mutation (C9orf72, mC9-MG), gene-corrected isogenic controls (isoC9-MG), and C9orf72 knockout hiPSC-MG (C9KO-MG), we show that reduced C9ORF72 protein is associated with impaired phagocytosis and an exaggerated immune response upon stimulation with lipopolysaccharide. Analysis of the C9ORF72 interactome revealed that C9ORF72 interacts with regulators of autophagy and functional studies showed impaired initiation of autophagy in mC9-MG and C9KO-MG. Coculture studies with motor neurons (MNs) demonstrated that the autophagy deficit in mC9-MG drives increased vulnerability of mC9-MNs to excitotoxic stimulus. Pharmacological activation of autophagy ameliorated both cell-autonomous functional deficits in hiPSC-MG and MN death in MG-MN coculture. Together, these findings reveal an important role for C9ORF72 in regulating immune homeostasis and identify dysregulation in myeloid cells as a contributor to neurodegeneration in ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Induced Pluripotent Stem Cells/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Microglia/metabolism , Autophagy/genetics
10.
Clin Lymphoma Myeloma Leuk ; 23(5): 360-369.e1, 2023 05.
Article in English | MEDLINE | ID: mdl-36849307

ABSTRACT

INTRODUCTION: We report one of the largest single center data from a mixed referral setting in India describing baseline characteristics and outcomes of patients with classical BCR::ABL1 negative myeloproliferative neoplasms (MPNs). MATERIALS AND METHODS: Patients diagnosed from June 2019 to 2022 were included. Workup and treatment was as per current guidelines. RESULTS: Diagnosis comprised polycythemia vera (PV) in 51(49%), ET in 33(31.7%) and prefibrotic primary myelofibrosis (MF) pre fibrotic myelofibrosis (prePMF) and myelofibrosis in 10(9.6%) patients each. Median age at diagnosis was 52 years for PV and ET, 65.5 for MF and 79 years for prePMF. Diagnosis was incidental in 63(56.7%) and after thrombosis in 8(7.2%) patients. Baseline next generation sequencing (NGS) was available for 63(60.5%) patients. Driver mutations in PV: JAK2 in 80.3%; in ET: JAK2 in 41%, CALR in 26%, MPL in 2.9%; in prePMF JAK2 in 70%, CALR in 20%, MPL in 10%, and in MF: JAK2 in 10%, MPL in 30% and CALR in 40%. Seven novel mutations were detected of which 5 were potentially pathogenic on computational analysis. After median follow up of 30 months, 2 patients had disease transformation and none had new episodes of thrombosis. Ten patients died, most commonly with cardiovascular events(n = 5,50%). Median overall survival was not reached. Mean OS time was 10.19 years(95%CI, 8.6 to 11.74) and mean time to transformation was 12.2 years(95% CI,11.8 to 12.6). CONCLUSION: Our data indicates comparatively indolent presentation of MPNs in India with younger age and lower risk of thrombosis. Further follow up will enable correlation with molecular data and guide modification of age based risk stratification models.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Humans , Calreticulin/genetics , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Polycythemia Vera/diagnosis , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Receptors, Thrombopoietin/genetics
11.
BMJ Open ; 13(2): e064169, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36725099

ABSTRACT

OBJECTIVES: Motor neuron disease (MND) is an incurable progressive neurodegenerative disease with limited treatment options. There is a pressing need for innovation in identifying therapies to take to clinical trial. Here, we detail a systematic and structured evidence-based approach to inform consensus decision making to select the first two drugs for evaluation in Motor Neuron Disease-Systematic Multi-arm Adaptive Randomised Trial (MND-SMART: NCT04302870), an adaptive platform trial. We aim to identify and prioritise candidate drugs which have the best available evidence for efficacy, acceptable safety profiles and are feasible for evaluation within the trial protocol. METHODS: We conducted a two-stage systematic review to identify potential neuroprotective interventions. First, we reviewed clinical studies in MND, Alzheimer's disease, Huntington's disease, Parkinson's disease and multiple sclerosis, identifying drugs described in at least one MND publication or publications in two or more other diseases. We scored and ranked drugs using a metric evaluating safety, efficacy, study size and study quality. In stage two, we reviewed efficacy of drugs in MND animal models, multicellular eukaryotic models and human induced pluripotent stem cell (iPSC) studies. An expert panel reviewed candidate drugs over two shortlisting rounds and a final selection round, considering the systematic review findings, late breaking evidence, mechanistic plausibility, safety, tolerability and feasibility of evaluation in MND-SMART. RESULTS: From the clinical review, we identified 595 interventions. 66 drugs met our drug/disease logic. Of these, 22 drugs with supportive clinical and preclinical evidence were shortlisted at round 1. Seven drugs proceeded to round 2. The panel reached a consensus to evaluate memantine and trazodone as the first two arms of MND-SMART. DISCUSSION: For future drug selection, we will incorporate automation tools, text-mining and machine learning techniques to the systematic reviews and consider data generated from other domains, including high-throughput phenotypic screening of human iPSCs.


Subject(s)
Motor Neuron Disease , Humans , Consensus , Induced Pluripotent Stem Cells , Motor Neuron Disease/drug therapy , Randomized Controlled Trials as Topic
12.
Neuropathol Appl Neurobiol ; 49(1): e12851, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36181265

ABSTRACT

AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury. METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons. RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models. CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Multiple Sclerosis/pathology , Axons/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Neurons/pathology , Mitochondria/pathology
13.
Brain ; 145(12): 4440-4447, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36162820

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative syndrome. In up to 20% of cases, a family history is observed. Although Mendelian disease gene variants are found in apparently sporadic ALS, genetic testing is usually restricted to those with a family history or younger patients with sporadic disease. With the advent of therapies targeting genetic ALS, it is important that everyone treatable is identified. We therefore sought to determine the probability of a clinically actionable ALS genetic test result by age of onset, globally, but using the UK as an exemplar. Blood-derived DNA was sequenced for ALS genes, and the probability of a clinically actionable genetic test result estimated. For a UK subset, age- and sex-specific population incidence rates were used to determine the number of such results missed by restricting testing by age of onset according to UK's National Genomic Test Directory criteria. There were 6274 people with sporadic ALS, 1551 from the UK. The proportion with a clinically actionable genetic test result ranged between 0.21 [95% confidence interval (CI) 0.18-0.25] in the youngest age group to 0.15 (95% CI 0.13-0.17) in the oldest age group for a full gene panel. For the UK, the equivalent proportions were 0.23 (95% CI 0.13-0.33) in the youngest age group to 0.17 (95% CI 0.13-0.21) in the oldest age group. By limiting testing in those without a family history to people with onset below 40 years, 115 of 117 (98% of all, 95% CI 96%-101%) clinically actionable test results were missed. There is a significant probability of a clinically actionable genetic test result in people with apparently sporadic ALS at all ages. Although some countries limit testing by age, doing so results in a significant number of missed pathogenic test results. Age of onset and family history should not be a barrier to genetic testing in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Male , Female , Humans , Amyotrophic Lateral Sclerosis/genetics , Genetic Testing , Incidence
14.
Acta Neuropathol ; 144(3): 465-488, 2022 09.
Article in English | MEDLINE | ID: mdl-35895140

ABSTRACT

A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Damage , DNA Repeat Expansion/genetics , Frontotemporal Dementia/pathology , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Pick Disease of the Brain/genetics , RNA/metabolism , RNA, Antisense , Zebrafish/genetics , Zebrafish/metabolism
15.
BMJ Open ; 12(7): e064173, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798516

ABSTRACT

INTRODUCTION: Motor neuron disease (MND) is a rapidly fatal neurodegenerative disease. Despite decades of research and clinical trials there remains no cure and only one globally approved drug, riluzole, which prolongs survival by 2-3 months. Recent improved mechanistic understanding of MND heralds a new translational era with many potential targets being identified that are ripe for clinical trials. Motor Neuron Disease Systematic Multi-Arm Adaptive Randomised Trial (MND-SMART) aims to evaluate the efficacy of drugs efficiently and definitively in a multi-arm, multi-stage, adaptive trial. The first two drugs selected for evaluation in MND-SMART are trazodone and memantine. METHODS AND ANALYSIS: Initially, up to 531 participants (177/arm) will be randomised 1:1:1 to oral liquid trazodone, memantine and placebo. The coprimary outcome measures are the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R) and survival. Comparisons will be conducted in four stages. The decision to continue randomising to arms after each stage will be made by the Trial Steering Committee who receive recommendations from the Independent Data Monitoring Committee. The primary analysis of ALSFRS-R will be conducted when 150 participants/arm, excluding long survivors, have completed 18 months of treatment; if positive the survival effect will be inferentially analysed when 113 deaths have been observed in the placebo group. The trial design ensures that other promising drugs can be added for evaluation in planned trial adaptations. Using this novel trial design reduces time, cost and number of participants required to definitively (phase III) evaluate drugs and reduces exposure of participants to potentially ineffective treatments. ETHICS AND DISSEMINATION: MND-SMART was approved by the West of Scotland Research Ethics Committee on 2 October 2019. (REC reference: 19/WS/0123) Results of the study will be submitted for publication in a peer-reviewed journal and a summary provided to participants. TRIAL REGISTRATION NUMBERS: European Clinical Trials Registry (2019-000099-41); NCT04302870.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neuron Disease , Neurodegenerative Diseases , Trazodone , Amyotrophic Lateral Sclerosis/drug therapy , Double-Blind Method , Humans , Memantine/therapeutic use , Motor Neuron Disease/drug therapy , Riluzole/therapeutic use , Trazodone/therapeutic use , Treatment Outcome
17.
Methods Mol Biol ; 2431: 311-322, 2022.
Article in English | MEDLINE | ID: mdl-35412284

ABSTRACT

Axonal transport is essential for the development, function, and survival of the nervous system. In an energy-demanding process, motor proteins act in concert with microtubules to deliver cargoes, such as organelles, from one end of the axon to the other. Perturbations in axonal transport are a prominent phenotype of many neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, we describe a simple method to fluorescently label mitochondrial cargo, a surrogate for fast axonal transport, in human induced pluripotent stem cell-derived motor neurons. This method enables the sparse labeling of axons to track directionality of movement and can be adapted to assess not only the cell autonomous effects of a genetic mutation on axonal transport but also the cell non-autonomous effects, through the use of conditioned medium and/or co-culture systems.


Subject(s)
Axonal Transport , Induced Pluripotent Stem Cells , Axonal Transport/physiology , Axons/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mitochondria/metabolism , Motor Neurons/metabolism
19.
Sci Rep ; 12(1): 3463, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236896

ABSTRACT

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.


Subject(s)
Body Temperature , COVID-19/diagnosis , Wearable Electronic Devices , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Young Adult
20.
Brain Commun ; 3(4): fcab242, 2021.
Article in English | MEDLINE | ID: mdl-34901853

ABSTRACT

Amyotrophic lateral sclerosis is a progressive and devastating neurodegenerative disease. Despite decades of clinical trials, effective disease-modifying drugs remain scarce. To understand the challenges of trial design and delivery, we performed a systematic review of Phase II, Phase II/III and Phase III amyotrophic lateral sclerosis clinical drug trials on trial registries and PubMed between 2008 and 2019. We identified 125 trials, investigating 76 drugs and recruiting more than 15 000 people with amyotrophic lateral sclerosis. About 90% of trials used traditional fixed designs. The limitations in understanding of disease biology, outcome measures, resources and barriers to trial participation in a rapidly progressive, disabling and heterogenous disease hindered timely and definitive evaluation of drugs in two-arm trials. Innovative trial designs, especially adaptive platform trials may offer significant efficiency gains to this end. We propose a flexible and scalable multi-arm, multi-stage trial platform where opportunities to participate in a clinical trial can become the default for people with amyotrophic lateral sclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL