Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Small ; 18(31): e2200967, 2022 08.
Article in English | MEDLINE | ID: mdl-35710979

ABSTRACT

Atherosclerosis is a major cause of mortality and morbidity worldwide. Left undiagnosed and untreated, atherosclerotic plaques can rupture and cause cardiovascular complications such as myocardial infarction and stroke. Atherosclerotic plaques are composed of lipids, including oxidized low-density lipoproteins and cholesterol crystals, and immune cells, including macrophages. 2-Hydroxypropyl-beta-cyclodextrin (CD) is FDA-approved for capturing, solubilizing, and delivering lipophilic drugs in humans. It is also known to dissolve cholesterol crystals and decrease atherosclerotic plaque size. However, its low retention time necessitates high dosages for successful therapy. This study reports CD delivery via air-trapped polybutylcyanoacrylate nanoparticles (with diameters of 388 ± 34 nm) loaded with CD (CDNPs). The multimodal contrast ability of these nanoparticles after being loaded with IR780 dye in mice is demonstrated using ultrasound and near-infrared imaging. It is shown that CDNPs enhance the cellular uptake of CD in murine cells. In an ApoE-/- mouse model of atherosclerosis, treatment with CDNPs significantly improves the anti-atherosclerotic efficacy of CD. Ultrasound triggering further improves CD uptake, highlighting that CDNPs can be used for ultrasound imaging and ultrasound-responsive CD delivery. Thus, CDNPs represent a theranostic nanocarrier for potential application in patients with atherosclerosis.


Subject(s)
Atherosclerosis , Cyclodextrins , Nanoparticles , Plaque, Atherosclerotic , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/drug therapy , Cholesterol , Humans , Mice , Multimodal Imaging , Nanoparticles/chemistry , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/drug therapy , Precision Medicine , Ultrasonography
2.
Biomaterials ; 274: 120875, 2021 07.
Article in English | MEDLINE | ID: mdl-34010755

ABSTRACT

Inflammatory disease (ID) is an umbrella term encompassing all illnesses involving chronic inflammation as the central manifestation of pathogenesis. These include, inflammatory bowel diseases, hepatitis, pulmonary disorders, atherosclerosis, myocardial infarction, pancreatitis, arthritis, periodontitis, psoriasis. The IDs create a severe burden on healthcare and significantly impact the global socio-economic balance. Unfortunately, the standard therapies that rely on a combination of anti-inflammatory and immunosuppressive agents are palliative and provide only short-term relief. In contrast, the emerging concept of immunomodulatory nanosystems (IMNs) has the potential to address the underlying causes and prevent reoccurrence, thereby, creating new opportunities for treating IDs. The IMNs offer exquisite ability to precisely modulate the immune system for a therapeutic advantage. The nano-sized dimension of IMNs allows them to efficiently infiltrate lymphatic drainage, interact with immune cells, and subsequently to undergo rapid endocytosis by hyperactive immune cells (HICs) at inflamed sites. Thus, IMNs serve to restore dysfunctional or HICs and alleviate the inflammation. We identified that different IMNs exert their immunomodulatory action via either of the seven mechanisms to modulate; cytokine production, cytokine neutralization, cellular infiltration, macrophage polarization, HICs growth inhibition, stimulating T-reg mediated tolerance and modulating oxidative-stress. In this article, we discussed representative examples of IMNs by highlighting their rationalization, design principle, and mechanism of action in context of treating various IDs. Lastly, we highlighted technical challenges in the application of IMNs and explored the future direction of research, which could potentially help to overcome those challenges.


Subject(s)
Cytokines , Immunomodulation , Anti-Inflammatory Agents , Humans , Inflammation/drug therapy , T-Lymphocytes, Regulatory
3.
Nanoscale ; 12(24): 12673-12697, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32524107

ABSTRACT

Rheumatoid Arthritis (RA), one of the leading causes of disability due to progressive autoimmune destruction of synovial joints, affects ∼1% of the global population. Standard therapy helps in reducing inflammation and delaying the progression of RA but is limited by non-responsiveness on long-term use and several side-effects. The conventional nanocarriers (CNCs), to some extent, minimize toxicity associated with free drug administration while improving the therapeutic efficacy. However, the uncontrolled release of the encapsulated drug even at off-targeted organs limits the application of CNCs. To overcome these challenges, trigger-responsive engineered nanocarriers (ENCs) have been recently explored for RA treatment. Unlike CNCs, ENCs enable precise control over on-demand drug release due to endogenous triggers in arthritic paws like pH, enzyme level, oxidative stress, or exogenously applied triggers like near-infrared light, magnetic field, ultrasonic waves, etc. As the trigger is selectively applied to the inflamed joint, it potentially reduces toxicity at off-target locations. Moreover, ENCs have been strategically coupled with imaging probe(s) for simultaneous monitoring of ENCs inside the body and facilitate an 'image-guided-co-trigger' for site-specific action in arthritic paws. In this review, the progress made in recently emerging 'trigger-responsive' and 'image-guided theranostics' ENCs for RA treatment has been explored with emphasis on the design strategies, mechanism, current status, challenges, and translational perspectives.


Subject(s)
Arthritis, Rheumatoid , Precision Medicine , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Humans , Inflammation
4.
ACS Biomater Sci Eng ; 6(9): 4731-4747, 2020 09 14.
Article in English | MEDLINE | ID: mdl-33455210

ABSTRACT

Ultrasound (US)-responsive carriers have emerged as promising theranostic candidates because of their ability to enhance US-contrast, promote image-guided drug delivery, cause on-demand pulsatile release of drugs in response to ultrasound stimuli, as well as to enhance the permeability of physiological barriers such as the stratum corneum, the vascular endothelium, and the blood-brain barrier (BBB). US-responsive carriers include microbubbles MBs, liposomes, droplets, hydrogels, and nanobubble-nanoparticle complexes and have been explored for cavitation-mediated US-responsive drug delivery. Recently, a transient increase in the permeability of the BBB by microbubble (MB)-assisted low-frequency US has shown promise in enhancing the delivery of therapeutic agents in the case of neurological disorders. Further, the periodic mechanical stimulus generated by US-responsive MBs have also been explored in tissue engineering and has directly influenced the differentiation of mesenchymal stem cells into cartilage. This Review discusses the various types of US-responsive carriers and explores their emerging roles in therapeutics ranging from drug delivery to tissue engineering.


Subject(s)
Drug Delivery Systems , Microbubbles , Contrast Media , Liposomes , Ultrasonography
5.
J Biol Inorg Chem ; 24(7): 999-1007, 2019 10.
Article in English | MEDLINE | ID: mdl-31388822

ABSTRACT

Gold nanoparticles (GNPs) of different sizes and shapes have been investigated extensively for their therapeutic potential against several diseases including cancer. However, the mechanisms with which they affect the cells are yet to be fully comprehended. In this study, we report the strong antiproliferative potential of novel, star-shaped ("stellate") GNPs that target tubulin-the building-block protein of the cytoskeletal filaments called microtubules-and disrupt microtubule network integrity. The stellate GNPs ("sGNPs") were synthesized from tryptone-stabilized GNPs ("tGNPs") and characterized by various spectroscopy methods combined with high-resolution transmission electron microscopy. Among a panel of cancer cell lines tested, they showed strong antiproliferative and anti-clonogenic efficacy against MDA-MB-231 cells. The antiproliferative mechanism of the sGNPs involves perturbation of the secondary and tertiary conformation of tubulin as evidenced by far-UV circular dichroism and anilinonaphthalene sulphate-binding assays. The structural perturbation of tubulin retarded its assembly competence as evidenced by polymer mass analysis and electron microscopy imaging of tubulin assembled in vitro and by immunofluorescence visualization of the cellular microtubules. The treated cells also induced cell cycle arrest at G1 phase. Taken together, our data suggest that sGNPs are potent, tubulin-targeted antiproliferative particles that can be evaluated further for their anticancer potential.


Subject(s)
Breast Neoplasms/pathology , Gold/chemistry , Gold/pharmacology , Metal Nanoparticles/chemistry , Tubulin/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Peptones/chemistry
6.
Biomed Microdevices ; 21(3): 55, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31203431

ABSTRACT

Cystinuria, is an autosomal recessive genetic disorder involving increasingly high levels of poorly soluble cysteine in urine leading to formation of stones. Developing a facile, low-cost, point-of-care and selective sensor for diagnosis of cysteine is imperative. Accordingly, for the detection of cysteine, the present study demonstrates an inexpensive colorimetric, paper-based vertical flow plasmonic micro-well device with a two-minute turn-around time. The method encompasses the use of microbially-synthesized silver nanoparticles (AgNPs) that change from light brown / yellow to dark brown upon binding with Sulphur present in cysteine. This technique allows for visual detection up to 1 × 10-5 mM cysteine and can be easily offered as a rapid diagnostic test even at setups with minimal resources.


Subject(s)
Colorimetry/instrumentation , Cysteine/analysis , Paper , Colorimetry/economics , Costs and Cost Analysis , Limit of Detection , Metal Nanoparticles/chemistry , Silver/chemistry , Software
7.
Front Microbiol ; 9: 2207, 2018.
Article in English | MEDLINE | ID: mdl-30294309

ABSTRACT

Biosynthesis of metallic nanoparticles has acquired particular attention due to its economic feasibility, low toxicity, and simplicity of the process. In this study, extracellular synthesis of silver and zinc nanoparticle was carried out by Pseudomonas hibiscicola isolated from the effluent of an electroplating industry in Mumbai. Characterization studies revealed synthesis of 40 and 60 nm nanoparticles of silver (AgNP) and zinc (ZnNP), respectively, with distinct morphology as observed in TEM and its crystalline nature confirmed by XRD. DLS, zeta potential, NTA, and FTIR studies further characterized nanoparticles giving data about its size, stability, and functional groups. Considering the toxicity of nanoparticles the evaluation of antimicrobial activity was studied in the range of non-toxic concentration for normal cell lines. Silver nanoparticles were found to be the most effective antimicrobial against all tested strains and drug-resistant clinical isolates of MRSA, VRE, ESBL, MDR, Pseudomonas aeruginosa with MIC in the range of 1.25-5 mg/ml. Zinc nanoparticles were found to be specifically active against Gram-positive bacteria like Staphylococcus aureus including its drug-resistant variant MRSA. Both AgNP and ZnNP were found to be effective against Mycobacterium tuberculosis and its MDR strain with MIC of 1.25 mg/ml. The synergistic action of nanoparticles assessed in combination with a common antibiotic gentamicin (590 µg/mg) used for the treatment of various bacterial infections by Checker board assay. Silver nanoparticles profoundly exhibited synergistic antimicrobial activity against drug-resistant strains of MRSA, ESBL, VRE, and MDR P. aeruginosa while ZnNP were found to give synergism with gentamicin only against MRSA. The MRSA, ESBL, and P. aeruginosa strains exhibited MIC of 2.5 mg/ml except VRE which was 10 mg/ml for both AgNPs and ZnNPs. These results prove the great antimicrobial potential of AgNP and ZnNP against drug-resistant strains of community and hospital-acquired infections and opens a new arena of antimicrobials for treatment, supplementary prophylaxis, and prevention therapy.

8.
Exp Cell Res ; 360(2): 163-170, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28887025

ABSTRACT

Gold nanoparticles have been investigated extensively for their molecular mechanisms of action and anticancer potential. We report a novel, tubulin-targeted antiproliferative mechanism of action of tryptone-stabilized gold nanoparticles (TsAuNPs). TsAuNPs, synthesized using HAuCl4·3H2O and tryptone and characterized by a variety of spectroscopic methods and transmission electron microscopy, were found to be inhibitory to viability of human pancreatic (PANC-1), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines in a concentration-dependent manner, with highest efficacy against PANC-1 cells. The particles strongly inhibited the clonogenic propagation of PANC-1 cells. TsAuNPs-mediated inhibition of cell viability involved an unusual mode of cell cycle arrest (arrest at both G0/G1 phase and S-phase) followed by apoptosis. In vitro, TsAuNPs bound purified tubulin, competitively inhibited anilinonaphthalene sulfonate binding to tubulin, and suppressed tubulin assembly. In cells, tubulin-TsAuNPs interactions were manifested as a disrupted microtubule network, defective reassembly of cold-disassembled microtubules, and induction of tubulin acetylation. Our data indicate that TsAuNPs inhibit cell viability by inducing differential cell cycle arrest possibly through disrupted dynamicity of cellular microtubules.


Subject(s)
Cell Cycle/drug effects , Gold/chemistry , Metal Nanoparticles/chemistry , Peptones/chemistry , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Tubulin/drug effects , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Stability , Gold/pharmacology , HeLa Cells , Humans , Mice , Molecular Targeted Therapy/methods , NIH 3T3 Cells , Peptones/pharmacology , Tubulin/metabolism
9.
Front Microbiol ; 7: 1424, 2016.
Article in English | MEDLINE | ID: mdl-27679615

ABSTRACT

Haloarchaea are salt-loving halophilic microorganisms that inhabit marine environments, sea water, salterns, and lakes. The resistance of haloarchaea to physical extremities that challenge organismic survival is ubiquitous. Metal and antibiotic resistance of haloarchaea has been on an upsurge due to the exposure of these organisms to metal sinks and drug resistance genes augmented in their natural habitats due to anthropogenic activities and environmental pollution. The efficacy of silver nanoparticles (SNPs) as a potent and broad spectrum inhibitory agent is known, however, there are no reports on the inhibitory activity of SNPs against haloarchaea. In the present study, we have investigated the antimicrobial potentials of SNPs synthesized using aqueous leaf extract of Cinnamomum tamala against antibiotic resistant haloarchaeal isolates Haloferax prahovense RR8, Haloferax lucentense RR15, Haloarcula argentinensis RR10 and Haloarcula tradensis RR13. The synthesized SNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, dynamic light scattering, X-ray diffraction and Fourier transform infrared spectroscopy. The SNPs demonstrated potent antimicrobial activity against the haloarchaea with a minimum inhibitory concentration of 300-400 µg/ml. Growth kinetics of haloarchaea in the presence of SNPs was studied by employing the Baranyi mathematical model for microbial growth using the DMFit curve fitting program. The C. tamala SNPs also demonstrated cytotoxic activity against human lung adenocarcinoma epithelial cell line (A540) and human breast adenocarcinoma cell line (MCF-7). The mechanism of inhibition of haloarchaea by the SNPs was investigated. The plausible mechanism proposed is the alterations and disruption of haloarchaeal membrane permeability by turbulence, inhibition of respiratory dehydrogenases and lipid peroxidation causing cellular and DNA damage resulting in cell death.

10.
Biosens Bioelectron ; 26(9): 3944-8, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21474297

ABSTRACT

Levels of serum cytokines are important markers for a broad range of human health conditions, ranging from infectious disease and cancer, to pollutant exposure and stress. In the interest of developing new rapid label-free methods for profiling serum cytokines, we have examined the utility of Arrayed Imaging Reflectometry (AIR) microarrays for this application. We find that AIR is readily able to profile 14 cytokines and other inflammatory biomarker proteins in a background of buffered bovine serum albumin or 1% bovine serum with performance metrics comparable to singleplex ELISA, but in a multiplex, chip-based, reagentless format. Further experiments with interferon-gamma (IFN-γ) demonstrated that the concentration of bovine serum could be increased to at least 20% without changing the overall analytical profile or limit of detection (<10 pg/mL).


Subject(s)
Biomarkers/blood , Biosensing Techniques , Cytokines/blood , Animals , Cattle , Humans , Interferon-gamma/blood , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...