Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(24): 15529-15544, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38842208

ABSTRACT

Single-chain nanoparticles (SCNPs) are a fascinating class of soft nano-objects with promising properties and relevance to protein condensates, polymer nanocomposites, nanomedicine, bioimaging, catalysis, and drug delivery. We combine molecular dynamics simulations and equilibrium and time-dependent statistical mechanical theory to construct a unified understanding of how the internal conformational structure of SCNPs, of both a simple fractal globule-like form and more complex objects with multiple internal intermediate length scales, determines nm-scale intermolecular packing correlations, thermodynamic properties, and center-of-mass diffusion over a wide range of concentrations up to dense melts. The intermolecular pair correlations generically exhibit a distinctive deep correlation hole form due to SCNP internal connectivity structure and repulsive interparticle interactions associated with a globular-like conformation on the macromolecular scale, with concentration-dependent deviations at small separations. Unanticipated exponential-like dependences of the equation-of-state, osmotic compressibility, and center-of-mass diffusion constant on SCNP macromolecular packing fraction are theoretically predicted and confirmed via simulations. System-specific behaviors are found associated with SCNP internal structure, but overarching regularities are identified and understood based on a generalized effective globule conformation on macromolecular scales. Diffusivity slows down by 2-3 decades with increasing concentration and is understood as a consequence of a nonactivated excluded volume-driven weak-caging process associated with space-time correlated intermolecular forces experienced by the SCNP. Good agreement between the theory and simulations is established, testable predictions are made, and a quantitative comparison with viscosity measurements on a specific SCNP fluid is carried out. The basic theoretical approach can potentially be extended to treat the chemical and physical consequences of varying the structure of other classes of soft nanoparticles with distinctive internal nanoscale organization relevant in nanotechnology and nanomedicine, and the possible emergence of macromolecular kinetically arrested glasses.

2.
Soft Matter ; 19(45): 8744-8763, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37937332

ABSTRACT

We generalize and apply the microscopic self-consistent cooperative hopping theory for activated penetrant dynamics in polymer melts and crosslinked networks to address the role of highly variable non-spherical molecular shape. The focus is on vastly different shaped penetrants that have identical space filling volume in order to isolate how non-spherical shape explicitly modifies dynamics over a wide range of temperature down to the kinetic glass transition temperature. The theory relates intramolecular and intermolecular structure and kinetic constraints, and reveals how different solvation packing of polymer monomers around variable shaped penetrants impact penetrant hopping. A highly shape-dependent penetrant activated relaxation, including alpha time decoupling and trajectory level cooperativity of the hopping process, is predicted in the deeply supercooled regime for relatively larger penetrants which is sensitive to whether the polymer matrix is a melt or heavily crosslinked network. In contrast, for smaller size penetrants or at high/medium temperatures the effect of isochoric penetrant shape is relatively weak. We propose an aspect ratio variable that organizes how penetrant shape influences the activated relaxation times, leading to a (near) collapse or master curve. The relative absolute values of the penetrant relaxation time (inverse hopping rate) in polymer melts versus in crosslinked networks are found to be opposite when compared at a common absolute temperature versus when they are compared at a fixed value of distance from the glass transition based on the variable Tg/T with Tg the glass transition temperature. Quantitative comparison with recent diffusion experiments on chemically complex molecular penetrants of variable shape but fixed volume in crosslinked networks reveals good agreement, and testable new predictions are made. Extension of the theoretical approach to more complex systems of high experimental interest are discussed, including applications to realize selective transport in membrane separation applications.

3.
ACS Polym Au ; 3(4): 307-317, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37576713

ABSTRACT

Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.

4.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37409769

ABSTRACT

The diffusion of small molecular penetrants through polymeric materials represents an important fundamental problem, relevant to the design of materials for applications such as coatings and membranes. Polymer networks hold promise in these applications because dramatic differences in molecular diffusion can result from subtle changes in the network structure. In this paper, we use molecular simulation to understand the role that cross-linked network polymers have in governing the molecular motion of penetrants. By considering the local, activated alpha relaxation time of the penetrant and its long-time diffusive dynamics, we can determine the relative importance of activated glassy dynamics on penetrants at the segmental scale vs entropic mesh confinement on penetrant diffusion. We vary several parameters, such as the cross-linking density, temperature, and penetrant size, to show that cross-links primarily affect molecular diffusion through the modification of the matrix glass transition, with local penetrant hopping at least partially coupled to the segmental relaxation of the polymer network. This coupling is very sensitive to the local activated segmental dynamics of the surrounding matrix, and we also show that penetrant transport is affected by dynamic heterogeneity at low temperatures. To contrast, only at high temperatures and for large penetrants or when the dynamic heterogeneity effect is weak, does the effect of mesh confinement become significant, even though penetrant diffusion more broadly empirically follows similar trends as established models of mesh confinement-based transport.

5.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37166070

ABSTRACT

We generalize a microscopic statistical mechanical theory of the activated dynamics of dilute spherical penetrants in glass-forming liquids to study the influence of crosslinking in polymer networks on the penetrant relaxation time and diffusivity over a wide range of temperature and crosslink fraction (fn). Our calculations are relevant to recent experimental studies of a nm-sized molecule diffusing in poly-(n-butyl methacrylate) networks. The theory predicts the penetrant relaxation time increases exponentially with the glass transition temperature, Tg(fn), which grows roughly linearly with the square root of fn due to the coupling of local hopping to longer-range collective elasticity. Moreover, Tg is also found to be proportional to a geometric confinement parameter defined as the ratio of the penetrant diameter to the mean network mesh size. The decoupling ratio of the penetrant and Kuhn segment alpha times displays a complex non-monotonic dependence on fn and temperature that is well collapsed based on the variable Tg(fn)/T. A model for the penetrant diffusion constant that combines activated relaxation and entropic mesh confinement is proposed, which results in a significantly stronger suppression of mass transport with degree of effective supercooling than predicted for the penetrant alpha time. This behavior corresponds to a new network-based type of "decoupling" of diffusion and relaxation. In contrast to the diffusion of larger nanoparticles in high temperature rubbery networks, our analysis in the supercooled regime suggests that for the penetrants studied the mesh confinement effects are of secondary importance relative to the consequences of crosslink-induced slowing down of activated hopping of glassy physics origin.

6.
ACS Cent Sci ; 9(3): 508-518, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36968535

ABSTRACT

The diffusion of molecules ("penetrants") of variable size, shape, and chemistry through dense cross-linked polymer networks is a fundamental scientific problem broadly relevant in materials, polymer, physical, and biological chemistry. Relevant applications include separation membranes, barrier materials, drug delivery, and nanofiltration. A major open question is the relationship between transport, thermodynamic state, and penetrant and polymer chemical structure. Here we combine experiment, simulation, and theory to unravel these competing effects on penetrant transport in rubbery and supercooled polymer permanent networks over a wide range of cross-link densities, size ratios, and temperatures. The crucial importance of the coupling of local penetrant hopping to polymer structural relaxation and the secondary importance of mesh confinement effects are established. Network cross-links strongly slow down nm-scale polymer relaxation, which greatly retards the activated penetrant diffusion. The demonstrated good agreement between experiment, simulation, and theory provides strong support for the size ratio (penetrant diameter to the polymer Kuhn length) as a key variable and the usefulness of coarse-grained simulation and theoretical models that average over Angstrom scale structure. The developed theory provides an understanding of the physical processes underlying the behaviors observed in experiment and simulation and suggests new strategies for enhancing selective polymer membrane design.

7.
Proc Natl Acad Sci U S A ; 119(41): e2210094119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36194629

ABSTRACT

Understanding the activated transport of penetrant or tracer atoms and molecules in condensed phases is a challenging problem in chemistry, materials science, physics, and biophysics. Many angstrom- and nanometer-scale features enter due to the highly variable shape, size, interaction, and conformational flexibility of the penetrant and matrix species, leading to a dramatic diversity of penetrant dynamics. Based on a minimalist model of a spherical penetrant in equilibrated dense matrices of hard spheres, a recent microscopic theory that relates hopping transport to local structure has predicted a novel correlation between penetrant diffusivity and the matrix thermodynamic dimensionless compressibility, S0(T) (which also quantifies the amplitude of long wavelength density fluctuations), as a consequence of a fundamental statistical mechanical relationship between structure and thermodynamics. Moreover, the penetrant activation barrier is predicted to have a factorized/multiplicative form, scaling as the product of an inverse power law of S0(T) and a linear/logarithmic function of the penetrant-to-matrix size ratio. This implies an enormous reduction in chemical complexity that is verified based solely on experimental data for diverse classes of chemically complex penetrants dissolved in molecular and polymeric liquids over a wide range of temperatures down to the kinetic glass transition. The predicted corollary that the penetrant diffusion constant decreases exponentially with inverse temperature raised to an exponent determined solely by how S0(T) decreases with cooling is also verified experimentally. Our findings are relevant to fundamental questions in glassy dynamics, self-averaging of angstrom-scale chemical features, and applications such as membrane separations, barrier coatings, drug delivery, and self-healing.


Subject(s)
Glass , Physics , Diffusion , Glass/chemistry , Phase Transition , Thermodynamics
8.
J Phys Chem Lett ; 13(17): 3957-3964, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35481369

ABSTRACT

Glass formers exhibit a pronounced slowdown in dynamics, accompanied by progressive heterogeneity as they approach the glass transition. There is intense debate over whether the dramatic slowdown is caused by dynamical heterogeneity and whether the enhanced dynamical heterogeneity originates from structural causes. However, the connection between dynamical heterogeneity and the spatial distribution of the single-particle free volume (a purely static structural quantity) was found to be rather weak, which raises the question of whether dynamic heterogeneity has a purely structural origin. Here, by introducing the concept of local-average free volume, we present numerical evidence that long-time dynamic heterogeneity shows significantly enhanced correlation with the average local free volume over a length scale of a few neighboring shells. Our results resolve the long-standing controversy about whether free volume plays an important role in particle rearrangements associated with the activated hopping relaxation. The concept of "local average" can be applied to other local structural descriptors to better correlate with dynamic heterogeneity in glass-forming liquids.

9.
J Chem Phys ; 156(11): 114901, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35317582

ABSTRACT

We combine simulation and Elastically Collective Nonlinear Langevin Equation (ECNLE) theory to study the activated relaxation in monodisperse atomic and polymeric Weeks-Chandler-Andersen (WCA) liquids over a wide range of temperatures and densities in the supercooled regime under isochoric conditions. By employing novel crystal-avoiding simulations, metastable equilibrium dynamics is probed in the absence of complications associated with size polydispersity. Based on a highly accurate structural input from integral equation theory, ECNLE theory is found to describe well the simulated density and temperature dependences of the alpha relaxation time of atomic fluids using a single system-specific parameter, ac, that reflects the nonuniversal relative importance of local cage and collective elastic barriers. For polymer fluids, the explicit dynamical effect of local chain connectivity is modeled at the fundamental dynamic free energy trajectory level based on a different parameter, Nc, that quantifies the degree of intramolecular correlation of bonded segment activated barrier hopping. For the flexible chain model studied, a physically intuitive value of Nc ≈ 2 results in good agreement between simulation and theory. A direct comparison between atomic and polymeric systems reveals that chain connectivity can speed up activated segmental relaxation due to weakening of equilibrium packing correlations but can slow down relaxation due to local bonding constraints. The empirical thermodynamic scaling idea for the alpha time is found to work well at high densities or temperatures but fails when both density and temperature are low. The rich and subtle behaviors revealed from simulation for atomic and polymeric WCA fluids are all well captured by ECNLE theory.

10.
J Phys Chem B ; 125(44): 12353-12364, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34723527

ABSTRACT

We establish via an in-depth analysis of experimental data that the dimensionless compressibility (proportional to the dimensionless amplitude of long wavelength thermal density fluctuations) of one-component normal and supercooled liquids of chemically complex nonpolar and weakly polar molecules and polymers follows extremely well a surprisingly simple and general temperature dependence over an exceptionally wide range of pressures and temperatures. A theoretical basis for this behavior is shown to exist in the venerable van der Waals model and its more modern interpretations. Although associated hydrogen-bonding (and to a lesser degree strongly polar) liquids display modestly more complex behavior, rather simple temperature and pressure dependences are also discovered. A new approach to collapse the temperature- and pressure-dependent dimensionless compressibility data onto a master curve is formulated that differs from the empirical thermodynamic scaling approach. As a practical matter, we also find that the dimensionless compressibility scales well as an inverse power law with temperature with an exponent that is system dependent and decreases with pressure. At very high pressures and low temperatures, the thermal liquid behavior appears to approach (but not reach) a repulsion-dominated random close packing limit. All these findings are relevant to our recent theoretical work on the problem of activated relaxation and vitrification of supercooled molecular and polymeric liquids.

11.
J Chem Phys ; 155(5): 054505, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34364324

ABSTRACT

We generalize the self-consistent cooperative hopping theory for a dilute spherical penetrant or tracer activated dynamics in dense metastable hard sphere fluids and glasses to address the effect of external stress, the consequences of which are systematically established as a function of matrix packing fraction and penetrant-to-matrix size ratio. All relaxation processes speed up under stress, but the difference between the penetrant and matrix hopping (alpha relaxation) times decreases significantly with stress corresponding to less time scale decoupling. A dynamic crossover occurs at a critical "slaving onset" stress beyond which the matrix activated hopping relaxation time controls the penetrant hopping time. This characteristic stress increases (decreases) exponentially with packing fraction (size ratio) and can be well below the absolute yield stress of the matrix. Below the slaving onset, the penetrant hopping time is predicted to vary exponentially with stress, differing from the power law dependence of the pure matrix alpha time due to system-specificity of the stress-induced changes in the penetrant local cage and elastic barriers. An exponential growth of the penetrant alpha relaxation time with size ratio under stress is predicted, and at a fixed matrix packing fraction, the exponential relation between penetrant hopping time and stress for different size ratios can be collapsed onto a master curve. Direct connections between the short- and long-time activated penetrant dynamics and between the penetrant (or matrix) alpha relaxation time and matrix thermodynamic dimensionless compressibility are also predicted. The presented results should be testable in future experiments and simulations.

12.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903245

ABSTRACT

Understanding in a unified manner the generic and chemically specific aspects of activated dynamics in diverse glass-forming liquids over 14 or more decades in time is a grand challenge in condensed matter physics, physical chemistry, and materials science and engineering. Large families of conceptually distinct models have postulated a causal connection with qualitatively different "order parameters" including various measures of structure, free volume, thermodynamic properties, short or intermediate time dynamics, and mechanical properties. Construction of a predictive theory that covers both the noncooperative and cooperative activated relaxation regimes remains elusive. Here, we test using solely experimental data a recent microscopic dynamical theory prediction that although activated relaxation is a spatially coupled local-nonlocal event with barriers quantified by local pair structure, it can also be understood based on the dimensionless compressibility via an equilibrium statistical mechanics connection between thermodynamics and structure. This prediction is found to be consistent with observations on diverse fragile molecular liquids under isobaric and isochoric conditions and provides a different conceptual view of the global relaxation map. As a corollary, a theoretical basis is established for the structural relaxation time scale growing exponentially with inverse temperature to a high power, consistent with experiments in the deeply supercooled regime. A criterion for the irrelevance of collective elasticity effects is deduced and shown to be consistent with viscous flow in low-fragility inorganic network-forming melts. Finally, implications for relaxation in the equilibrated deep glass state are briefly considered.

13.
Soft Matter ; 17(9): 2624-2639, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33528485

ABSTRACT

We employ the microscopic self-consistent cooperative hopping theory of penetrant activated dynamics in glass forming viscous liquids and colloidal suspensions to address new questions over a wide range of high matrix packing fractions and penetrant-to-matrix particle size ratios. The focus is on the mean activated relaxation time of smaller tracers in a hard sphere fluid of larger particle matrices. This quantity also determines the penetrant diffusion constant and connects directly with the structural relaxation time probed in an incoherent dynamic structure factor measurement. The timescale of the non-activated fast dissipative process is also studied and is predicted to follow power laws with the contact value of the penetrant-matrix pair correlation function and the penetrant-matrix size ratio. For long time penetrant relaxation, in the relatively lower packing fraction metastable regime the local cage barriers are dominant and matrix collective elasticity effects unimportant. As packing fraction and/or penetrant size grows, much higher barriers emerge and the collective elasticity associated with the correlated matrix dynamic displacement that facilitates penetrant hopping becomes important. This results in a non-monotonic variation with packing fraction of the degree of decoupling between the matrix and penetrant alpha relaxation times. The conditions required for penetrant hopping to become slaved to the matrix alpha process are determined, which depend mainly on the penetrant to matrix particle size ratio. By analyzing the absolute and relative importance of the cage and elastic barriers we establish a mechanistic understanding of the origin of the predicted exponential growth of the penetrant hopping time with size ratio predicted at very high packing fractions. A dynamics-thermodynamics power law connection between the penetrant activation barrier and the matrix dimensionless compressibility is established as a prediction of theory, with different scaling exponents depending on whether matrix collective elasticity effects are important. Quantitative comparisons with simulations of the penetrant relaxation time, diffusion constant, and transient localization length of tracers in dense colloidal suspensions and cold viscous liquids reveal good agreements. Multiple new predictions are made that are testable via future experiments and simulations. Extension of the theoretical approach to more complex systems of high experimental interest (nonspherical molecules, semiflexible polymers, crosslinked networks) interacting via variable hard or soft repulsions and/or short range attractions is possible, including under external deformation.

14.
ACS Macro Lett ; 10(10): 1229-1235, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-35549053

ABSTRACT

We construct a segmental scale force level theory for the center-of-mass diffusion constant and corresponding relaxation time for globally compact unconcatenated ring polymer solutions and melts (degree of polymerization N). The approach is based on slowly decaying macromolecular scale intermolecular force dynamic correlations as the origin of their unusual dynamics. Unentangled Rouse, weakly caged, and activated regimes are predicted. The barrier of the activated regime scales linearly with N and as a power law of concentration, which drives a kinetic glass transition on the radius-of-gyration scale. The values of N at the two dynamic crossovers (Rouse to weakly caged, weakly caged to activated) are proportional, with nonuniversality entering mainly via macromolecular volume fraction and dimensionless compressibility. Quantitative comparisons with simulation data reveal good agreement. Aspects of intermediate time dynamics are analyzed, and predictions are made for the conditions required to observe a macromolecular glass transition in the laboratory and on the computer.

15.
J Phys Chem B ; 124(28): 6121-6131, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32633526

ABSTRACT

We employ the microscopic Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated dynamics in combination with crystal-avoiding simulations to study four inter-related questions for metastable monodisperse hard sphere fluids. The first is how significantly improved integral equation theory structural input (Modified-Verlet (MV) closure) changes the dynamical predictions of ECNLE theory. The main consequence is a modest enhancement of the importance of the collective elastic barrier relative to its local cage contribution, which increases the alpha relaxation time and fragility relative to prior results based on the Percus-Yevick closure. Second, ECNLE-MV theory predictions for the alpha time and self-diffusion constant in the metastable regime are quantitatively compared to our new simulations. The small adjustment of a numerical prefactor that enters the collective elastic barrier leads to quantitative agreement over three decades. Third, using the more accurate MV structural input, ECNLE theory is shown to predict thermodynamics-structure-dynamics "correlations" based on various long and short wavelength scalar properties all related to static two-point collective density fluctuations. The logarithm of the alpha relaxation time scales as a power law with these scalar metrics with an exponent that is significantly lower in the less dense noncooperative activated regime compared to the very dense highly cooperative regime. However, the discovered correlation of activated relaxation with a thermodynamic property (dimensionless compressibility) is not causal in ECNLE theory, but rather reflects a strong connection between the local structural quantities that quantify kinetic constraints in the theory with the amplitude of long wavelength density fluctuations. Fourth, the consequences of chemically specific nonuniversalities associated with the onset condition and relative importance of collective elasticity are studied. The predicted thermodynamics-structure-dynamics correlations are found to be robust, albeit with nontrivial shifts of the onset condition.

16.
Phys Rev E ; 101(4-1): 042121, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422713

ABSTRACT

We employ the Ornstein-Zernike integral equation theory with the Percus-Yevick (PY) and modified-Verlet (MV) closures to study the equilibrium structural and thermodynamic properties of metastable monodisperse hard sphere and continuous repulsion Weeks-Chandler-Andersen (WCA) fluids under density and temperature conditions where the system is strongly overcompressed or supercooled, respectively. The theoretical results are compared to crystal-avoiding simulations of these dense monodisperse model one-component fluids. The equation of state (EOS) and dimensionless compressibility are computed using both the virial and compressibility routes. For hard spheres, the MV-based virial route EOS and dimensionless compressibility are in very good agreement with simulation for all packing fractions, much better than the PY analogs. The corresponding MV-based predictions for the static structure factor are also very good. The amplitude of density fluctuations on the local cage scale and in the long wavelength limit, and three technically different measures of the density correlation length, are studied with both closures. All five properties grow in a roughly exponential manner with density in the metastable regime up to packing fractions of 58% with no sign of saturation. The MV-based results are in good agreement with our crystal-avoiding simulations. Interestingly, the density dependences of long and short wavelength quantities are closely related. The MV-based theory is also quite accurate for the thermodynamics and structure of supercooled monodisperse WCA fluids. Overall our findings are also relevant as critical input to microscopic theories that relate the equilibrium pair correlation function or static structure factor to dynamical constraints, barriers, and activated relaxation in glass-forming liquids.

17.
Phys Rev E ; 100(5-1): 052607, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31869984

ABSTRACT

It is well known that glass-forming liquids exhibit a number of anomalous dynamical phenomena, most notably a two-step relaxation in the self-intermediate scattering function and the breakdown of the Stokes-Einstein (SE) relation, as they are cooled toward the glass transition temperature. While these phenomena are generally ascribed to dynamic heterogeneity, specifically to the presence of slow- and fast-moving particles, a quantitative elucidation of the two-step relaxation and the violation of the SE relation in terms of these concepts has not been successful. In this work, we propose a classification of particles according to the rank order of their displacements (from an arbitrarily defined origin of time), and we divide the particles into long-distance (LD), medium-distance, and short-distance (SD) traveling particle groups. Using molecular-dynamics simulation data of the Kob-Andersen model, we show quantitatively that the LD group is responsible for the fast relaxation in the two-step relaxation process in the intermediate scattering function, while the SD group gives rise to the slow (α) relaxation. Furthermore, our analysis reveals that τ_{α} is controlled by the SD group, while the ensemble-averaged diffusion coefficient D is controlled by both the LD and SD groups. The combination of these two features provides a natural explanation for the breakdown in the SE relation at low temperature. In addition, we find that the α-relaxation time, τ_{α}, of the overall system is related to the relaxation time of the LD particles, τ_{LD}, as τ_{α}=τ_{0}exp(Ωτ_{LD}/k_{B}T).

18.
J Chem Phys ; 147(11): 114507, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28938829

ABSTRACT

Our recent molecular dynamics simulation results of binary particle glass-former systems demonstrated that the non-monotonic temperature T-dependence of the point-to-set dynamic length scale ξcdyn in harmonic (HM) systems is not an intrinsic property of bulk liquids but originates from wall effects. We would expect our results to apply equally to other simple models, such as Lennard-Jones (LJ) systems. However, Hocky et al. presented a monotonic T-dependent ξcdyn in a LJ system. Therefore, the present work employs molecular dynamics simulations to investigate the T-dependent behavior of ξcdyn in the LJ system employed by Hocky et al. to clarify our expectation. Results employing a geometry size d that is somewhat smaller than that employed by Hocky et al. reveal that a non-monotonic behavior exists in the LJ system. By varying the value of d, we demonstrate that the formation of a peak in ξcdyn with respect to T in the LJ system is the natural result of wall effects. More importantly, a new non-monotonic behavior is observed, where the temperature at which the ratio of the characteristic time required for the overlap profile of the system to decay to a given value for a point near the wall to the corresponding characteristic time at a point in the center attains a maximum is in good agreement with the temperature Tmax-c at which ξcdyn attains a maximum value, indicating that the non-monotonic behavior of ξcdyn with respect to T is a natural property of liquids in a sandwiched geometry. Furthermore, we find that, contrary to HM systems, where the values of Tmax-c obtained for all values of d considered were greater than the mode-coupling temperature Tc, the value of Tmax-c obtained for LJ systems can be either greater than, equal to, or less than Tc because an HM system has a stronger finite-size effect than that in a LJ system, indirectly implying that the conclusion derived from random first-order transition theory that a dramatic change occurs near Tc bears no necessary relationship with the non-monotonic evolution of ξcdyn with respect to T.

19.
Phys Rev E ; 95(5-1): 050601, 2017 May.
Article in English | MEDLINE | ID: mdl-28618563

ABSTRACT

It has been broadly accepted that the behavior of glass-forming liquids, where their relaxation dynamics exhibit a pronounced slowdown as they are cooled toward the glass transition temperature, is caused by the increase in one or more correlation lengths. However, the role of length scales in the dynamics of glass-forming liquids is not clearly established, and past simulation work that suggests a surprising nonmonotonic temperature evolution of spatial dynamical correlations near the mode-coupling crossover temperature has been both questioned and supported by subsequent work. Here, using molecular dynamics simulation, we also show a striking maximum in the dynamic length scale ξ_{c}^{dyn} at a given temperature, but the temperature of this maximum is found to shift as the size of the confined system increases. Furthermore, we find that such a maximum disappears for all geometry sizes considered when a rough wall is replaced with a smooth, hard wall, suggesting that the nature of the nonmonotonic temperature dependence of ξ_{c}^{dyn} does not reflect an intrinsic property of bulk liquids, but originates from wall effects. Our results provide new insights into the dynamics of glass-forming liquids, particularly for quasi-two-dimensional systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...