Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(13): e2104788, 2022 05.
Article in English | MEDLINE | ID: mdl-35261191

ABSTRACT

The development of in situ growth methods for the fabrication of high-quality perovskite single-crystal thin films (SCTFs) directly on hole-transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large-area high-quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high-quality large-size MAPbBr3 SCTFs on HTLs is investigated. An optimal "sweet spot" is determined: low interface energy between the precursor solution and substrate, a slow heating rate, and a moderate precursor solution concentration. As a result, the as-obtained perovskite SCTFs with a thickness of 540 nm achieve a record area to thickness ratio of 1.94 × 104  mm, a record X-ray diffraction peak full width at half maximum of 0.017°, and an ultralong carrier lifetime of 1552 ns. These characteristics enable the as-obtained perovskite SCTFs to exhibit a record carrier mobility of 141 cm2 V-1 s-1 and good long-term structural stability over 360 days.


Subject(s)
Calcium Compounds , Oxides , Titanium , Calcium Compounds/chemistry , Oxides/chemistry , Titanium/chemistry
2.
ACS Appl Mater Interfaces ; 13(23): 27313-27322, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34100286

ABSTRACT

Considering that the periodic photonic nanostructures are commonly realized by expensive nanofabrication processes and the tunability of structure parameters is limited and complicated, we demonstrate a solution-processed upside-down molding method to fabricate photonic resonators on perovskites with a pattern geometry controllable to a certain extent. This upside-down approach not only reveals the effect of capillary force during the imprinting but also can control the waveguide layer thickness due to the inversion of the perovskite membranes.

3.
ACS Appl Mater Interfaces ; 12(28): 31863-31874, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32567298

ABSTRACT

Metal-halide perovskite-based green and red light-emitting diodes (LEDs) have witnessed a rapid development because of their facile synthesis and processability; however, the blue-band emission is constrained by their unstable chemical properties and poorly conducting emitting layers. Here, we show a trioctylphosphine oxide (TOPO)-mediated one-step approach to realize bright deep-blue luminescent FAPbBr3 nanoplatelets (NPLs) with enhanced stability and charge transport. The concentration of NPL surface ligands is shown to be progressively tuned via varying the amount of intermediate TOPO due to the acid-base equilibrium between protic acid and TOPO. By effectively optimizing the concentration of surface ligands, the structural integrity of NPL solids can be preserved in ambient air for a week, mainly because of the highly ordered and dense solid assembly and the reduced defects. The removal of excess organic ligands also enables the improvement of charge mobility by orders of magnitude. Ultimately, ultrapure deep-blue perovskite LEDs (439 nm) with a narrow emission width of 14 nm and a peak EQE of 0.14% are achieved at low driving voltage. Our finding expands the current understanding of surface ligand modulation in the development of pure bromide deep-blue perovskite optoelectronics.

4.
Adv Sci (Weinh) ; 7(11): 2000689, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32537421

ABSTRACT

Recently, metal halide perovskite light-emitting diodes (Pero-LEDs) have achieved significant improvement in device performance, especially for external quantum efficiency (EQE). And EQE is mostly determined by internal quantum efficiency of the emitting material, charge injection balancing factor (ηc), and light extraction efficiency (LEE) of the device. Herein, an ultrathin poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (UT-PEDOT:PSS) hole transporter layer is prepared by a water stripping method, and the UT-PEDOT:PSS can enhance ηc and LEE simultaneously in Pero-LEDs, mostly due to the improved carrier mobility, more matched energy level alignment, and reduced photon loss. More importantly, the performance enhancement from UT-PEDOT:PSS is quite universal and applicable in different kinds of Pero-LEDs. As a result, the EQEs of Pero-LEDs based on 3D, quasi-3D, and quasi-2D perovskites obtain enhancements of 42%, 87%, and 111%, and the corresponding maximum EQE reaches 17.6%, 15.0%, and 6.8%, respectively.

5.
Sci Rep ; 8(1): 15799, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30361519

ABSTRACT

For organic-inorganic perovskite to be considered as the most promising materials for light emitting diodes and solar cell applications, the active materials must be proven to be stable under various conditions, such as ambient environment, heat and electrical bias. Understanding the degradation process in organic-inorganic perovskite light emitting diodes (PeLEDs) is important to improve the stability and the performance of the device. We revealed that electrical bias can greatly influence the luminance and external quantum efficiency of PeLEDs. It was found that device performance could be improved under low voltage bias with short operation time, and decreased with continuous operation. The degradation of perovskite film under high electrical bias leads to the decrease of device performance. Variations in the absorption, morphology and element distribution of perovskite films under different electrical bias revealed that organic-inorganic perovskites are unstable at high electrical bias. We bring new insights in the PeLEDs which are crucial for improving the stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...