Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 148: 97-103, 2018 05.
Article in English | MEDLINE | ID: mdl-29596958

ABSTRACT

The pentose-fermenting yeast Pachysolen tannophilus can convert glucose and xylose in lignocellulosic hydrolysates to ethanol. However, it performs poorly in industrially relevant lignocellulosic hydrolysates containing mixed sugars and inhibitors. Efforts have been directed at improving the performance of this yeast to enable efficient lignocellulosic biomass conversion. While some successes have been reported using random mutagenesis and/or hybridization-based approaches, further genetic improvement of this yeast is hampered by the lack of efficient gene transfer methods as well as limited genetic information to guide further construction of robust strains of P. tannophilus. In this study, we aimed to address this short-coming by establishing the optimal conditions needed for efficient gene transfer into P. tannophilus. We ascertained that plasmids can be transferred into P. tannophilus through trans-kingdom conjugation or lithium acetate (LiAc) transformation. The efficiency of plasmid YEp13 (2-micron, LEU2) transferred into a P. tannophilus leucine auxotroph (Leu-) reached as high as 1.93 × 10-2 transconjugants per input recipient and 3.25 × 104 transformants per µg plasmid DNA through trans-kingdom conjugation and transformation, respectively. In trans-kingdom conjugation, the number of recipient P. tannophilus cells played an important role, while the ratio of donor (Escherichia coli) to recipient cells was less important. For efficient transformation in P. tannophilus, the use of PEG 3350 was essential, as no transformants were obtained in its absence. The transformation efficiency increased with the addition of single-stranded carrier DNA and incubation at 30 °C for >60 min. Plasmids with different replication origins or 2-micron plasmids with different CUG codon-optimized antibiotic resistance markers were unable to transform P. tannophilus under our experimental conditions. The results are of interest in the genetic manipulation and improvement of P. tannophilus.


Subject(s)
Gene Transfer Techniques , Genetics, Microbial/methods , Plasmids , Saccharomycetales/genetics , Fermentation , Genetic Vectors , Lignin/metabolism , Pentoses/metabolism , Saccharomycetales/metabolism , Temperature
2.
Front Microbiol ; 8: 477, 2017.
Article in English | MEDLINE | ID: mdl-28377761

ABSTRACT

Disease outbreaks of verotoxin-producing Escherichia coli (VTEC) O157:H7 and non-O157 serotypes associated with leafy green vegetables are becoming a growing concern. A better understanding of the behavior of VTEC, particularly non-O157 serotypes, on lettuce under stress conditions is necessary for designing more effective control strategies. Hydrogen peroxide (H2O2) can be used as a sanitizer to reduce the microbial load in leafy green vegetables, particularly in fresh produce destined for the organic market. In this study, we tested the hypothesis that H2O2 treatment of contaminated lettuce affects in the same manner transcription of stress-associated and virulence genes in VTEC strains representing O157 and non-O157 serotypes. Six VTEC isolates representing serotypes O26:H11, O103:H2, O104:H4, O111:NM, O145:NM, and O157:H7 were included in this study. The results indicate that 50 mM H2O2 caused a population reduction of 2.4-2.8 log10 (compared to non-treated control samples) in all six VTEC strains present on romaine lettuce. Following the treatment, the transcription of genes related to oxidative stress (oxyR and sodA), general stress (uspA and rpoS), starvation (phoA), acid stress (gadA, gadB, and gadW), and virulence (stx1A, stx2A, and fliC) were dramatically downregulated in all six VTEC serotypes (P ≤ 0.05) compared to not treated control samples. Therefore, VTEC O157:H7 and non-O157 serotypes on lettuce showed similar survival rates and gene transcription profiles in response to 50 mM H2O2 treatment. Thus, the results derived from this study provide a basic understanding of the influence of H2O2 treatment on the survival and virulence of VTEC O157:H7 and non-O157 serotypes on lettuce.

3.
Int J Food Microbiol ; 215: 7-15, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26318408

ABSTRACT

Understanding the survival mechanisms used by Shiga toxin-producing Escherichia coli (STEC), including O157:H7 and non-O157 serotypes, is important for minimizing contamination of fresh produce and occurrence of foodborne outbreaks. Recent outbreaks linked to leafy green vegetables and sprouted seeds have prompted researchers to focus on investigating decontamination strategies. Several studies showed that hydrogen peroxide (H2O2) treatment has been effective in reducing pathogens on fresh produce. As such, the effect of hydrogen peroxide on stress-associated and virulence gene expression in six STEC isolates was investigated in this study. Logarithmic phase cells of E. coli O157:H7 (EDL933) and non-O157 serotypes, including E. coli O26:H11 (EC20070549), O103:H2 (EC19970811), O104:H4 (NML#11-3088), O111:NM (EC20070546) and O145:NM (EC19970355) were exposed to 2.5mM H2O2 for 40 min and gene expression was evaluated using quantitative real-time PCR. Different patterns of gene expression were observed in E. coli O157:H7 and non-O157 serotypes. Particularly, Shiga toxin gene stx2 was upregulated in O157:H7, but not in O104:H4. Moreover, stx1 was significantly upregulated in STEC O157:H7, but only slightly upregulated Stx1-positive non-O157 serotypes. However genes related to motility (fliC) and intimin gene (eae) were downregulated in most strains. Stress-associated sodA gene encoding manganese superoxide dismutase was significantly upregulated in all serotypes. The dps gene coding for non-specific DNA binding protein was upregulated in O145:NM, O111:NM, O103:H2 and O26:H11. However genes related to cold shock (cspC) and acid resistance (gadW) were significantly downregulated in all strains tested. The results of this study provide a basic understanding of the oxidative stress impact on survival and virulence of non-O157 serotype STEC strains.


Subject(s)
Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Oxidative Stress/genetics , Shiga-Toxigenic Escherichia coli/genetics , Anti-Infective Agents/pharmacology , Escherichia coli Proteins/genetics , Hydrogen Peroxide/pharmacology , Virulence Factors/genetics
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 1): 82-91, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23275166

ABSTRACT

Many pathogenic bacteria that infect humans, animals and plants rely on a quorum-sensing (QS) system to produce virulence factors. N-Acyl homoserine lactones (AHLs) are the best-characterized cell-cell communication signals in QS. The concentration of AHL plays a key role in regulating the virulence-gene expression and essential biological functions of pathogenic bacteria. N-Acyl homoserine lactonases (AHL-lactonases) have important functions in decreasing pathogenicity by degrading AHLs. Here, structures of the AHL-lactonase from Ochrobactrum sp. (AidH) in complex with N-hexanoyl homoserine lactone, N-hexanoyl homoserine and N-butanoyl homoserine are reported. The high-resolution structures together with biochemical analyses reveal convincing details of AHL degradation. No metal ion is bound in the active site, which is different from other AHL-lactonases, which have a dual Lewis acid catalysis mechanism. AidH contains a substrate-binding tunnel between the core domain and the cap domain. The conformation of the tunnel entrance varies with the AHL acyl-chain length, which contributes to the binding promiscuity of AHL molecules in the active site. It also supports the biochemical result that AidH is a broad catalytic spectrum AHL-lactonase. Taken together, the present results reveal the catalytic mechanism of the metal-independent AHL-lactonase, which is a typical acid-base covalent catalysis.


Subject(s)
Carboxylic Ester Hydrolases/chemistry , Ochrobactrum/enzymology , Carboxylic Ester Hydrolases/genetics , Catalysis , Catalytic Domain/genetics , Cell Communication/genetics , Hydrogen-Ion Concentration , Hydrolysis , Mutagenesis, Site-Directed , Ochrobactrum/pathogenicity , Quorum Sensing/genetics , Substrate Specificity/genetics
5.
Can J Microbiol ; 57(10): 857-65, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21958046

ABSTRACT

A better understanding of the functionality of probiotics and dietary fibres with prebiotic activity is required for the development of improved synbiotic preparations. In this study, utilization of ß(2-1) fructans, galactooligosaccharides, and plant polysaccharides as prebiotics by lactobacilli, bifidobacteria, and pediococci was investigated. Our results demonstrate that prebiotics with linear chains consisting of galactose units are better utilized by probiotics than are those consisting of glucose and fructose units, and the ability of probiotic bacteria to utilize prebiotics is strain-specific. In addition, rye fructooligosaccharides represent a prebiotic fibre that supports the growth of a wide range of probiotic cultures and as such has a potential to improve the successfulness of probiotic treatments. This study also demonstrates dietary fibre utilization by pediococci and provides data supporting the possible use of pediococci as a probiotic in synbiotic combinations.


Subject(s)
Dietary Fiber/metabolism , Probiotics/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Fructans/metabolism , Humans , Lactobacillus/growth & development , Lactobacillus/metabolism , Oligosaccharides/metabolism , Pediococcus/growth & development , Pediococcus/metabolism , Polysaccharides/metabolism
6.
Appl Environ Microbiol ; 76(15): 4933-42, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20525860

ABSTRACT

N-acylhomoserine lactones (AHLs) are signaling molecules in many quorum-sensing (QS) systems that regulate interactions between various pathogenic bacteria and their hosts. Quorum quenching by the enzymatic inactivation of AHLs holds great promise in preventing and treating infections, and several such enzymes have been reported. In this study, we report the characterization of a novel AHL-degrading protein from the soil bacterium Ochrobactrum sp. strain T63. This protein, termed AidH, shares no similarity with any of the known AHL degradases but is highly homologous with a hydrolytic enzyme from Ochrobactrum anthropi ATCC 49188 that contains the alpha/beta-hydrolase fold. By liquid chromatography-mass spectrometry (MS) analysis, we demonstrate that AidH functions as an AHL-lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Mutational analyses indicate that the G-X-Nuc-X-G motif or the histidine residue conserved among alpha/beta-hydrolases is critical for the activity of AidH. Furthermore, the AHL-inactivating activity of AidH requires Mn(2+) but not several other tested divalent cations. We also showed that AidH significantly reduces biofilm formation by Pseudomonas fluorescens 2P24 and the pathogenicity of Pectobacterium carotovorum, indicating that this enzyme is able to effectively quench QS-dependent functions in these bacteria by degrading AHLs.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Ochrobactrum/enzymology , Acyl-Butyrolactones/metabolism , Amino Acid Motifs , Amino Acid Sequence , Biofilms/drug effects , Biofilms/growth & development , Catalytic Domain , Cations, Divalent/metabolism , Chromatography, Liquid , Coenzymes/metabolism , Conserved Sequence , DNA Mutational Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Manganese/metabolism , Mass Spectrometry , Molecular Sequence Data , Ochrobactrum/genetics , Ochrobactrum/isolation & purification , Pectobacterium carotovorum/drug effects , Pectobacterium carotovorum/pathogenicity , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/growth & development , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...