Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 3(10): 4270-4, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21863190

ABSTRACT

The application of Prussian blue analogue (PBA) Mn(3)[Co(CN)(6)](2)·nH(2)O porous nanocubes as absorbents for heavy metal ions has been demonstrated. The result indicates that Mn(3)[Co(CN)(6)](2)·nH(2)O porous nanocubes with average diameter of 240 nm possess excellent adsorption efficiency for Pb(2+) ions (94.21% at initial Pb(2+) concentration of 10 mg L(-1)). Moreover, Mn(3)[Co(CN)(6)](2)·nH(2)O porous nanocubes can also show high adsorption efficiency on heavy metal ions even in a strong acidic solution due to its chemical stability. Notably, an external magnet could be used to accelerate the separation of Mn(3)[Co(CN)(6)](2)·nH(2)O from the treated solution. It is suggested that the high adsorption efficiency may derive from the large surface area, M(3)(II)[M(III)(CN)(6)](2)·nH(2)O porous framework structure and affinity between polarizable π-electron clouds of the cyanide bridges and heavy metals ions.


Subject(s)
Cyanides/chemistry , Ferrocyanides/chemistry , Magnetics , Metals, Heavy/chemistry , Nanostructures/chemistry , Adsorption , Cobalt/chemistry , Hydrogen-Ion Concentration , Manganese/chemistry , Porosity
2.
Dalton Trans ; 40(20): 5557-62, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21503352

ABSTRACT

Prussian Blue Analogue (PBA) Mn(3)[Co(CN)(6)](2)·nH(2)O porous nanocubes were successfully synthesized in high yield at room temperature in the presence of poly(vinylpyrrolidone) (PVP) and characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The effects of synthetic parameters such as surfactant, the ratio of different solvents on the morphology and size of the particles were investigated. The experimental results showed that poly(vinylpyrrolidone) (PVP) and solvent ethanol play critical roles in the formation of uniform porous nanocubes. N(2) adsorption properties indicated that the Mn(3)[Co(CN)(6)](2) porous nanocubes with an average diameter of 240 nm possessed a high surface area of 675 m(2) g(-1) with total volume of 0.354 cm(3) g(-1). Moreover, the porous nanocubes showed high CO(2) adsorption at room temperature and 1 bar of pressure. To our knowledge, this is the first report on the synthesis of Mn(3)[Co(CN)(6)](2) nanomaterials and their CO(2) adsorption applications at the nanoscale.

SELECTION OF CITATIONS
SEARCH DETAIL
...