Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Biochem Mol Toxicol ; 36(11): e23193, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35924427

ABSTRACT

Hexavalent chromium [Cr (VI)] is a well-established carcinogen. Cr (VI)-treated cells are phenotypically characterized by aberrant levels of growth and migration. Curcumin, a polyphenolic compound from the plant turmeric, has been found to possess antiproliferation, anti-inflammation, and antioxidant properties. In this study, the effect of curcumin on Cr (VI)-induced cell survival and migration and the underlying mechanism were investigated. Cell viability assay on A549 and human embryonic lung fibroblast cells showed that curcumin at the concentration of 10 µM could significantly attenuate Cr (VI)-induced viability in both cell lines. Following Western blot assay and metabolomics assays, cotreatment with curcumin and Cr (VI) resulted in the suppression of Cr (VI)-induced glycolysis-, autophagy-, and migration-related proteins. Meanwhile, curcumin increased Cr (VI)-reduced oxidative phosphorylation (OXPHOS)-related proteins, COXIV and ND1. Moreover, curcumin suppressed Cr (VI)-induced mitochondrial dysfunction, mitochondrial mass decrease, and mitochondrial membrane potential loss. Treatment with curcumin for 24 h significantly attenuated pcATG4B-induced autophagy and the subsequent expression of glucose transporter 1, hexokinase II, and pyruvate kinase M2. Wound healing and transwell assay demonstrated that curcumin reduced Cr (VI)-induced cell migration. Taken together, these results showed that curcumin was able to attenuate Cr (VI)-induced cell viability and migration by targeting autophagy-dependent reprogrammed metabolism from OXPHOS to glycolysis.


Subject(s)
Curcumin , Humans , Curcumin/pharmacology , Autophagy , Membrane Potential, Mitochondrial , Mitochondria , Cell Cycle
2.
Front Immunol ; 12: 785457, 2021.
Article in English | MEDLINE | ID: mdl-34868067

ABSTRACT

Respirovirus such as influenza virus infection induces pulmonary anti-viral immune response, orchestration of innate and adaptive immunity restrain viral infection, otherwise causes severe diseases such as pneumonia. Chemokines regulate leukocyte recruitment to the inflammation site. One chemokine CXCL5, plays a scavenging role to regulate pulmonary host defense against bacterial infection, but its role in pulmonary influenza virus infection is underdetermined. Here, using an influenza (H1N1) infected CXCL5-/- mouse model, we found that CXCL5 not only responds to neutrophil infiltration into infected lungs at the innate immunity stage, but also affects B lymphocyte accumulation in the lungs by regulating the expression of the B cell chemokine CXCL13. Inhibition of CXCL5-CXCR2 axis markedly induces CXCL13 expression in CD64+CD44hiCD274hi macrophages/monocytes in infected lungs, and in vitro administration of CXCL5 to CD64+ alveolar macrophages suppresses CXCL13 expression via the CXCL5-CXCR2 axis upon influenza challenge. CXCL5 deficiency leads to increased B lymphocyte accumulation in infected lungs, contributing to an enhanced B cell immune response and facilitating induced bronchus-associated lymphoid tissue formation in the infected lungs during the late infection and recovery stages. These data highlight multiple regulatory roles of CXCL5 in leukocyte chemotaxis during pulmonary influenza infection.


Subject(s)
Adaptive Immunity , Chemokine CXCL5/metabolism , Chemotaxis/immunology , Immunity, Innate , Influenza, Human/complications , Pneumonia, Viral/etiology , Pneumonia, Viral/metabolism , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers , Chemokine CXCL5/genetics , Chemotaxis/genetics , Disease Models, Animal , Disease Susceptibility , Host-Pathogen Interactions , Humans , Immunophenotyping , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/pathology , Influenza, Human/virology , Leukocytes/immunology , Leukocytes/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Pneumonia, Viral/pathology , Signal Transduction
3.
Toxicology ; 462: 152928, 2021 10.
Article in English | MEDLINE | ID: mdl-34481905

ABSTRACT

High mobility group A2 (HMGA2) is closely related to the occurrence, development and prognosis of tumors. But the mechanism is unclear. Metabolic reprogramming is a dominant way to meet anabolic and energy requirements of tumor cells for their survival, growth and proliferation. Here, we investigated the role of metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis mediated by HMGA2/autophagy axis in cadmium (Cd, CdCl2)-induced migration. First, we found that Cd induced glycolysis and reduced OXPHOS in vivo (0.5 and 1 mg/kg, i.p. or 0.8 and 1.6 µM, i.t.) and in vitro (2 µM in A549 cells and 0.05 µM in HELF cells). Then, genetic knockdown of HMGA2 restored Cd-reduced mitochondrial mass and OXPHOS and inhibited Cd-increased glycolysis, indicating that HMGA2 was involved in Cd-induced metabolic reprogramming. 2-Deoxy-d-glucose (2DG, 5 mM), the inhibitor of glycolysis decreased Cd/HMGA2-induced cell migration and restored Cd/HMGA2-decreased OXPHOS and mitochondrial mass. Inhibition of autophagy by 3-Methyladenine (3MA, 3 mM) elucidated an essential role of autophagy in HMGA2-induced glycolysis, migration, and HMGA2-reduced OXPHOS. Overall, our study demonstrated that autophagy was required for HMGA2-mediated metabolic reprogramming, which was critical for Cd-induced migration. Targeting HMGA2 and autophagy-dependent reprogrammed metabolism may be an effective way to inhibit Cd-induced cell migration.


Subject(s)
Autophagy/drug effects , Cadmium/toxicity , Cell Movement/drug effects , HMGA2 Protein/genetics , Oxidative Phosphorylation/drug effects , A549 Cells , Animals , Cadmium/administration & dosage , Cell Line , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Knockdown Techniques , Glycolysis/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , Mitochondria/drug effects
4.
Front Optoelectron ; 14(4): 445-449, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36637752

ABSTRACT

Here we present a graphene photodetector of which the graphene and structural system infrared absorptions are enhanced by interface phonon polariton (IPhP) coupling. IPhPs are supported at the SiC/AlN interface of device structure and used to excite interband transitions of the intrinsic graphene under gated-field tuning. The simulation results show that at normal incidence the absorbance of graphene or system reaches up to 43% or closes to unity in a mid-infrared frequency range. In addition, we found the peak-absorption frequency is mainly decided by the AlN thickness, and it has a red-shift as the thickness decreases. This structure has great application potential in graphene infrared detection technology.

5.
Toxicol Lett ; 333: 261-268, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32866567

ABSTRACT

Chromium (Cr) (VI) is a proven toxin, mutagen and carcinogen. Here, the role of high mobility group A2 (HMGA2) mediating Cr (VI)-induced mitophagy was investigated. Cr (VI)-treatment caused the formation of double membrane autophagic vesicles (AVs) engulfing mitochondria and increased the expression of PINK1, PARK2, LC3 as well as HMGA2 particularly in mitochondria in A549 cells. Silencing of HMGA2 by siRNA decreased expression of PINK1, PARK2 and LC3 II especially in mitochondria, while over-expression of HMGA2 increased the expression of them in A549 cells. It indicated that HMGA2 played a critical role in Cr (VI)-induced mitophagy. Most importantly, the results of co-immunoprecipitation showed for the first time that HMGA2 could bind to PARK2 in mitochondria to activate the mitophagy pathway. In BALB/c mice, Cr (VI) increased the expression of PINK1 and PARK2 in lung tissues. Furthermore, over-expression of HMGA2 in BALB/c mice by transfection of plasmid HMGA2 significantly increased the levels of PINK1, PARK2 and LC3 II in lung tissues. Collectively, our data demonstrated that HMGA2 plays an important role in Cr (VI)-induced mitophagy through direct interaction with PARK2 in A549 cells and lung tissue.


Subject(s)
Chromium/toxicity , Environmental Pollutants/toxicity , HMGA2 Protein/metabolism , Lung/drug effects , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Gene Expression/drug effects , HEK293 Cells , HMGA2 Protein/genetics , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Protein Transport , Transfection , Ubiquitin-Protein Ligases/genetics
6.
Opt Lett ; 45(7): 1806-1809, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236004

ABSTRACT

Here, we demonstrate an all-silicon photonic switch, working at an infrared communication wavelength and pumped by spatial light, where a ring resonator and a metasurface absorber are both designed in photonic crystals and monolithically integrated on a silicon-on-insulator wafer. Through selective doping, the absorber gets a pump absorption completely different from near zero of the resonator. Based on the thermo-optical effect, the device is capable of tuning the wavelength of the guided mode by $\sim{341}\;{\rm pm/mW}$∼341pm/mW and switching in time $ {\lt} {1.0}\;\unicode{x00B5} {\rm s}$<1.0µs to the pump response. The high responsivity and switching speed as well as all-silicon processing techniques make the design potentially for free-space optical communication and detection.

7.
Int J Med Mushrooms ; 21(6): 583-593, 2019.
Article in English | MEDLINE | ID: mdl-31679230

ABSTRACT

Tacrine is the first drug licensed for the treatment of Alzheimer disease. Unfortunately, reversible hepatotoxicity limits its clinical use. In our previous study, we found that tacrine induced apoptosis in HepG2 cells by reactive oxygen species (ROS) formation and mitochondria dysfunction. Inonotus obliquus is a mushroom traditionally used as a folk medicine in Asia. In this study, the possible protective effect of polysaccharides from I. obliquus was investigated. The results showed that I. obliquus polysaccharides (IOP) reduced tacrine-induced apoptosis in HepG2 cells. Inhibition of tacrine-induced ROS generation, 8-OHdG formation in mitochondrial DNA, and loss of the mitochondrial transmembrane potential by IOP were also observed. Furthermore, IOP decreased the cytochrome c release and activation of caspase-3 induced by tacrine. These data suggest that IOP could inhibit tacrine-induced apoptosis in HepG2 cells. The protection is mediated by an antioxidant protective mechanism. Consumption of IOP may be a plausible way to prevent tacrine-induced hepatotoxicity.


Subject(s)
Apoptosis/drug effects , Basidiomycota/chemistry , Fungal Polysaccharides/pharmacology , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Tacrine/pharmacology , Asia , Hep G2 Cells , Humans , Medicine, Traditional , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology , Reactive Oxygen Species/antagonists & inhibitors
8.
PLoS One ; 13(10): e0205521, 2018.
Article in English | MEDLINE | ID: mdl-30296305

ABSTRACT

Platelets have been implicated in pulmonary inflammation following exposure to bacterial stimuli. The mechanisms involved in the platelet-mediated host response to respiratory bacterial infection remain incompletely understood. In this study, we demonstrate that platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) plays critical roles in a mouse model of acute bacterial pneumonia using Pseudomonas aeruginosa. Platelets are activated during P. aeruginosa infection, and mice depleted of platelets display markedly increased mortality and impaired bacterial clearance. CXCL4 deficiency impairs bacterial clearance and lung epithelial permeability, which correlate with decreased neutrophil recruitment to BALF. Interestingly, CXCL4 deficiency selectively regulates chemokine production, suggesting that CXCL4 has an impact on other chemokine expression. In addition, CXCL4 deficiency reduces platelet-neutrophil interactions in blood following P. aeruginosa infection. Further studies revealed that platelet-derived CXCL4 contributes to the P. aeruginosa-killing of neutrophils. Altogether, these findings demonstrate that CXCL4 is a vital chemokine that plays critical roles in bacterial clearance during P. aeruginosa infection through recruiting neutrophils to the lungs and intracellular bacterial killing.


Subject(s)
Host Microbial Interactions/immunology , Platelet Factor 4/metabolism , Pneumonia, Bacterial/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa , Animals , Blood Platelets/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/microbiology , Gene Expression Regulation , Lung/immunology , Lung/microbiology , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Platelet Factor 4/genetics , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/mortality , Pseudomonas Infections/blood , Pseudomonas Infections/mortality
9.
Zool Res ; 38(3): 146-154, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28585438

ABSTRACT

Respirovirus infection can cause viral pneumonia and acute lung injury (ALI). The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo. IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation. We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice. Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6, TNF-α, G-CSF, KC, and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1 -/- mice in comparison with that of wild type infected mice. The adaptive immune response against the H1N1 virus in IL-1R1 -/- mice was impaired with downregulated anti-viral Th1 cell, CD8+ cell, and antibody functions, which contributes to attenuated viral clearance. Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1 -/- mice compared with that in WT infected mice. Moreover, the infected IL-1R1 -/- mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung. Together, these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury, particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.


Subject(s)
Cytokines/metabolism , Gene Expression Regulation/physiology , Influenza A Virus, H1N1 Subtype , Lung/cytology , Orthomyxoviridae Infections/virology , Receptors, Interleukin-1 Type I/metabolism , Animals , Cytokines/genetics , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Receptors, Interleukin-1 Type I/genetics
10.
Am J Respir Cell Mol Biol ; 56(2): 261-270, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27755915

ABSTRACT

Platelets and neutrophils contribute to the development of acute lung injury (ALI). However, the mechanism by which platelets make this contribution is incompletely understood. We investigated whether the two most abundant platelet chemokines, CXCL7, which induces neutrophil chemotaxis and activation, and CXCL4, which does neither, mediate ALI through complementary pathogenic pathways. To examine the role of platelet-derived chemokines in the pathogenesis of ALI using Cxcl7-/- and Cxcl4-/- knockout mice and mice that express human CXCL7 or CXCL4, we measured levels of chemokines in these mice. ALI was then induced by acid aspiration, and the severity of injury was evaluated by histology and by the presence of neutrophils and protein in the bronchoalveolar lavage fluid. Pulmonary vascular permeability was studied in vivo by measuring extravasation of fluorescently labeled dextran. Murine CXCL7, both recombinant and native protein released from platelets, can be N-terminally processed by cathepsin G to yield a biologically active CXCL7 fragment. Although Cxcl7-/- mice are protected from lung injury through the preservation of endothelial/epithelial barrier function combined with impaired neutrophils transmigration, Cxcl4-/- mice are protected through improved barrier function without affecting neutrophils transmigration to the airways. Sensitivity to ALI is restored by transgenic expression of CXCL7 or CXCL4. Platelet-derived CXCL7 and CXCL4 contribute to the pathogenesis of ALI through complementary effects on neutrophil chemotaxis and through activation and vascular permeability.


Subject(s)
Acute Lung Injury/blood , Blood Platelets/metabolism , Chemokines, CXC/blood , Platelet Factor 4/blood , Animals , Capillary Permeability , Humans , Lung/blood supply , Lung/pathology , Mice, Transgenic
11.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1062-L1075, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27694472

ABSTRACT

Alveolar epithelial regeneration is essential for resolution of the acute respiratory distress syndrome (ARDS). Although neutrophils have traditionally been considered mediators of epithelial damage, recent studies suggest they promote type II pneumocyte (AT2) proliferation, which is essential for regenerating alveolar epithelium. These studies did not, however, evaluate this relationship in an in vivo model of alveolar epithelial repair following injury. To determine whether neutrophils influence alveolar epithelial repair in vivo, we developed a unilateral acid injury model that creates a severe yet survivable injury with features similar to ARDS. Mice that received injections of the neutrophil-depleting Ly6G antibody had impaired AT2 proliferation 24 and 72 h after acid instillation, which was associated with decreased reepithelialization and increased alveolar protein concentration 72 h after injury. As neutrophil depletion itself may alter the cytokine response, we questioned the contribution of neutrophils to alveolar epithelial repair in neutropenic granulocyte-colony stimulating factor (G-CSF)-/- mice. We found that the loss of G-CSF recapitulated the neutrophil response of Ly6G-treated mice and was associated with defective alveolar epithelial repair, similar to neutrophil-depleted mice, and was reversed by administration of exogenous G-CSF. To approach the mechanisms, we employed an unbiased protein analysis of bronchoalveolar lavage fluid from neutrophil-depleted and neutrophil-replete mice 12 h after inducing lung injury. Pathway analysis identified significant differences in multiple signaling pathways that may explain the differences in epithelial repair. These data emphasize an important link between the innate immune response and tissue repair in which neutrophils promote alveolar epithelial regeneration.


Subject(s)
Acute Lung Injury/pathology , Alveolar Epithelial Cells/pathology , Epithelium/pathology , Neutrophils/pathology , Regeneration , Acids , Acute Lung Injury/chemically induced , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Antibodies/pharmacology , Bronchoalveolar Lavage Fluid , Cell Proliferation/drug effects , Disease Models, Animal , Epithelium/drug effects , Granulocyte Colony-Stimulating Factor/deficiency , Granulocyte Colony-Stimulating Factor/metabolism , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism , Proteomics , Regeneration/drug effects , Respiratory Distress Syndrome/pathology , Signal Transduction/drug effects , Up-Regulation/drug effects , Wound Healing/drug effects
12.
Oncoimmunology ; 5(1): e1061175, 2016.
Article in English | MEDLINE | ID: mdl-26942073

ABSTRACT

Neutrophils are important innate immune cells involved in microbial clearance at the sites of infection. However, their role in cancer development is unclear. We hypothesized that neutrophils mediate antitumor effects in early tumorigenesis. To test this, we first studied the cytotoxic effects of neutrophils in vitro. Neutrophils were cytotoxic against tumor cells, with neutrophils isolated from tumor-bearing mice trending to have increased cytotoxic activities. We then injected an ELR+ CXC chemokine-producing tumor cell line into C57BL/6 and Cxcr2-/- mice, the latter lacking the receptors for neutrophil chemokines. We observed increased tumor growth in Cxcr2-/- mice. As expected, tumors from Cxcr2-/- mice contained fewer neutrophils. Surprisingly, these tumors also contained fewer CD8+ T cells, but more IL-17-producing cells. Replenishment of functional neutrophils was correlated with decreased IL-17-producing cells, increased CD8+ T cells, and decreased tumor size in Cxcr2-/- mice, while depletion of neutrophils in C57BL/6 mice showed the opposite effects. Results from a non-ELR+ CXC chemokine producing tumor further supported that functional neutrophils indirectly mediate tumor control by suppressing IL-17A production. We further studied the correlation of IL-17A and CD8+ T cells in vitro. IL-17A suppressed proliferation and IFNγ production of CD8+ T cells, while CD11b+Ly6G+ neutrophils did not suppress CD8+ T cell function. Taken together, these data demonstrate that, while neutrophils could control tumor growth by direct cytotoxic effects, the primary mechanism by which neutrophils exert antitumor effects is to regulate IL-17 production, through which they indirectly promote CD8+ T cell responses.

13.
J Pediatr Surg ; 50(6): 948-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818317

ABSTRACT

PURPOSE: Intestinal adaptation involves villus lengthening, crypt deepening, and increased capillary density following small bowel resection (SBR). Mice lacking the proangiogenic chemokine CXCL5 have normal structural adaptation but impaired angiogenesis. This work evaluates the impact of incomplete adaptive angiogenesis on the functional capacity of the intestine after SBR. METHODS: CXCL5 knockout (KO) and C57BL/6 wild-type (WT) mice underwent 50% SBR. Magnetic resonance imaging measured weekly body composition. Intestinal absorptive capacity was evaluated through fecal fat analysis. Gene expression profiles for select macronutrient transporters were measured via RT-PCR. Postoperative crypt and villus measurements were assessed for structural adaptation. Submucosal capillary density was measured through CD31 immunohistochemistry. RESULTS: Comparable postoperative weight gain occurred initially. Diminished weight gain, impaired fat absorption, and elevated steatorrhea occurred in KO mice after instituting high-fat diet. Greater postoperative upregulation of ABCA1 fat transporter occurred in WT mice, while PEPT1 protein transporter was significantly downregulated in KO mice. KO mice had impaired angiogenesis but intact structural adaptation. CONCLUSION: After SBR, KO mice display an inefficient intestinal absorption profile with perturbed macronutrient transporter expression, impaired fat absorption, and slower postoperative weight gain. In addition to longer villi and deeper crypts, an intact angiogenic response may be required to achieve functional adaptation to SBR.


Subject(s)
Adaptation, Physiological , Intestine, Small/blood supply , Intestine, Small/surgery , Neovascularization, Physiologic , Animals , Chemokine CXCL5 , Intestinal Absorption , Intestinal Mucosa/pathology , Intestine, Small/physiology , Mice, Inbred C57BL , Mice, Knockout
14.
Nat Med ; 20(8): 919-26, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25064128

ABSTRACT

The circadian system is an important regulator of immune function. Human inflammatory lung diseases frequently show time-of-day variation in symptom severity and lung function, but the mechanisms and cell types underlying these effects remain unclear. We show that pulmonary antibacterial responses are modulated by a circadian clock within epithelial club (Clara) cells. These drive circadian neutrophil recruitment to the lung via the chemokine CXCL5. Genetic ablation of the clock gene Bmal1 (also called Arntl or MOP3) in bronchiolar cells disrupts rhythmic Cxcl5 expression, resulting in exaggerated inflammatory responses to lipopolysaccharide and an impaired host response to Streptococcus pneumoniae infection. Adrenalectomy blocks rhythmic inflammatory responses and the circadian regulation of CXCL5, suggesting a key role for the adrenal axis in driving CXCL5 expression and pulmonary neutrophil recruitment. Glucocorticoid receptor occupancy at the Cxcl5 locus shows circadian oscillations, but this is disrupted in mice with bronchiole-specific ablation of Bmal1, leading to enhanced CXCL5 expression despite normal corticosteroid secretion. The therapeutic effects of the synthetic glucocorticoid dexamethasone depend on intact clock function in the airway. We now define a regulatory mechanism that links the circadian clock and glucocorticoid hormones to control both time-of-day variation and the magnitude of pulmonary inflammation and responses to bacterial infection.


Subject(s)
ARNTL Transcription Factors/immunology , Chemokine CXCL5/immunology , Circadian Clocks/immunology , Glucocorticoids/pharmacology , Pneumonia, Pneumococcal/immunology , Streptococcus pneumoniae , ARNTL Transcription Factors/genetics , Animals , Cells, Cultured , Chemokine CXCL5/biosynthesis , Circadian Rhythm/physiology , Dexamethasone/pharmacology , Epithelial Cells/immunology , Humans , Lipopolysaccharides/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/immunology , Neutrophils/immunology , Period Circadian Proteins/immunology , Pneumonia, Pneumococcal/genetics , Receptors, Glucocorticoid/immunology , Uteroglobin/genetics
15.
J Pediatr Surg ; 49(6): 976-80; discussion 980, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24888846

ABSTRACT

PURPOSE: Intestinal adaptation is the compensatory response to massive small bowel resection (SBR) and characterized by lengthening of villi and deepening of crypts, resulting in increased mucosal surface area. Previous studies have demonstrated increased villus capillary blood vessel density after SBR, suggesting a role for angiogenesis in the development of resection-induced adaptation. Since we have previously shown enhanced expression of the proangiogenic chemokine CXCL5 after SBR, the purpose of this study was to determine the effect of disrupted CXCL5 expression on intestinal adaptation. METHODS: CXCL5 knockout (KO) and C57BL/6 wild type (WT) mice were subjected to either a 50% proximal SBR or sham operation. Ileal tissue was harvested on postoperative day 7. To assess for adaptation, villus height and crypt depth were measured. Submucosal capillary density was measured by CD31 immunohistochemistry. RESULTS: Both CXCL5-KO and WT mice demonstrated normal structural features of adaptation. Submucosal capillary density increased in the WT but not in the KO mice following SBR. CONCLUSION: CXCL5 is required for increased intestinal angiogenesis during resection-induced adaptation. Since adaptive villus growth occurs despite impaired CXCL5 expression and enhanced angiogenesis, this suggests that the growth of new blood vessels is not needed for resection-induced mucosal surface area expansion following massive SBR.


Subject(s)
Adaptation, Physiological , Chemokine CXCL5/genetics , Gene Expression Regulation , Intestine, Small/blood supply , Neovascularization, Physiologic/genetics , RNA/genetics , Short Bowel Syndrome/genetics , Animals , Chemokine CXCL5/biosynthesis , Disease Models, Animal , Female , Immunohistochemistry , Intestine, Small/surgery , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Real-Time Polymerase Chain Reaction , Short Bowel Syndrome/pathology
16.
Nat Med ; 20(5): 524-30, 2014 May.
Article in English | MEDLINE | ID: mdl-24747744

ABSTRACT

Neonatal colonization by microbes, which begins immediately after birth, is influenced by gestational age and the mother's microbiota and is modified by exposure to antibiotics. In neonates, prolonged duration of antibiotic therapy is associated with increased risk of late-onset sepsis (LOS), a disorder controlled by neutrophils. A role for the microbiota in regulating neutrophil development and susceptibility to sepsis in the neonate remains unclear. We exposed pregnant mouse dams to antibiotics in drinking water to limit transfer of maternal microbes to the neonates. Antibiotic exposure of dams decreased the total number and composition of microbes in the intestine of the neonates. This was associated with decreased numbers of circulating and bone marrow neutrophils and granulocyte/macrophage-restricted progenitor cells in the bone marrow of antibiotic-treated and germ-free neonates. Antibiotic exposure of dams reduced the number of interleukin-17 (IL-17)-producing cells in the intestine and production of granulocyte colony-stimulating factor (G-CSF). Granulocytopenia was associated with impaired host defense and increased susceptibility to Escherichia coli K1 and Klebsiella pneumoniae sepsis in antibiotic-treated neonates, which could be partially reversed by administration of G-CSF. Transfer of a normal microbiota into antibiotic-treated neonates induced IL-17 production by group 3 innate lymphoid cells (ILCs) in the intestine, increasing plasma G-CSF levels and neutrophil numbers in a Toll-like receptor 4 (TLR4)- and myeloid differentiation factor 88 (MyD88)-dependent manner and restored IL-17-dependent resistance to sepsis. Specific depletion of ILCs prevented IL-17- and G-CSF-dependent granulocytosis and resistance to sepsis. These data support a role for the intestinal microbiota in regulation of granulocytosis, neutrophil homeostasis and host resistance to sepsis in neonates.


Subject(s)
Escherichia coli Infections/microbiology , Microbiota , Neutrophils/pathology , Sepsis/microbiology , Animals , Anti-Bacterial Agents/administration & dosage , Escherichia coli/immunology , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Female , Granulocyte Colony-Stimulating Factor/metabolism , Homeostasis , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interleukin-17/metabolism , Intestines/immunology , Intestines/microbiology , Klebsiella pneumoniae/pathogenicity , Mice , Neutrophils/microbiology , Pregnancy , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology , Toll-Like Receptor 4/metabolism
17.
Am J Respir Cell Mol Biol ; 47(4): 436-44, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22592923

ABSTRACT

IL-1 has been associated with acute lung injury (ALI) in both humans and animal models, but further investigation of the precise mechanisms involved is needed, and may identify novel therapeutic targets. To discover the IL-1 mediators essential to the initiation and resolution phases of acute lung inflammation, knockout mice (with targeted deletions for either the IL-1 receptor-1, i.e., Il-1r1(-/-), or the IL-1 receptor antagonist, i.e., Il-1rn(-/-)) were exposed to aerosolized LPS, and indices of lung and systemic inflammation were examined over the subsequent 48 hours. The resultant cell counts, histology, protein, and RNA expression of key cytokines were measured. Il-1r1(-/-) mice exhibited decreased neutrophil influx, particularly at 4 and 48 hours after exposure to LPS, as well as reduced bronchoalveolar lavage (BAL) expression of chemokines and granulocyte colony-stimulating factor (G-CSF). On the contrary, Il-1rn(-/-) mice demonstrated increased BAL neutrophil counts, increased BAL total protein, and greater evidence of histologic injury, all most notably 2 days after LPS exposure. Il-1rn(-/-) mice also exhibited higher peripheral neutrophil counts and greater numbers of granulocyte receptor-1 cells in their bone marrow, potentially reflecting their elevated plasma G-CSF concentrations. Furthermore, IL-17A expression was increased in the BAL and lungs of Il-1rn(-/-) mice after exposure to LPS, likely because of increased numbers of γδ T cells in the Il-1rn(-/-) lungs. Blockade with IL-17A monoclonal antibody before LPS exposure decreased the resultant BAL neutrophil counts and lung G-CSF expression in Il-1rn(-/-) mice, 48 hours after exposure to LPS. In conclusion, Il-1rn(-/-) mice exhibit delayed resolution in acute lung inflammation after exposure to LPS, a process that appears to be mediated via the G-CSF/IL-17A axis.


Subject(s)
Granulocyte Colony-Stimulating Factor/metabolism , Interleukin 1 Receptor Antagonist Protein/deficiency , Interleukin-17/metabolism , Pneumonia/immunology , Acute Lung Injury/blood , Acute Lung Injury/immunology , Acute Lung Injury/metabolism , Analysis of Variance , Animals , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bronchoalveolar Lavage Fluid/chemistry , Chemokines, CXC/metabolism , Gene Expression , Granulocyte Colony-Stimulating Factor/blood , Granulocyte Colony-Stimulating Factor/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-17/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Leukocyte Count , Lipopolysaccharides/pharmacology , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Pneumonia/blood , Pneumonia/metabolism , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics
18.
Am J Respir Cell Mol Biol ; 47(1): 104-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22362385

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality in the United States. The major cause of COPD is cigarette smoking. Extensive leukocyte influx into the lungs, mediated by chemokines, is a critical event leading to COPD. Although both resident and myeloid cells secrete chemokines in response to inflammatory stimuli, little is known about the role of epithelial-derived chemokines, such as CXC chemokine ligand (CXCL)5, in the pathogenesis of cigarette smoke-induced inflammation. To explore the role of CXCL5, we generated CXCL5 gene-deficient mice and exposed them to secondhand smoke (SHS) for 5 hours/day for 5 days/week up to 3 weeks (subacute exposure). We observed a reduced recruitment of leukocytes to the lungs of CXCL5(-/-) mice compared with their wild-type (WT) counterparts, and noted that macrophages comprised the predominant leukocytes recruited to the lungs. Irradiation experiments performed on CXCL5(-/-) or WT mice transplanted with WT or CXCL5(-/-) bone marrow revealed that resident but not hematopoietic cell-driven CXCL5 is important for mediating SHS-induced lung inflammation. Interestingly, we observed a significant reduction of monocyte chemotactic protein-1 (MCP-1/CC chemokine ligand 2) concentrations in the lungs of CXCL5(-/-) mice. The instillation of recombinant MCP-1 in CXCL5(-/-) mice reversed macrophage recruitment. Our results also show the reduced activation of NF-κB/p65 in the lungs, as well as the attenuated activation of C-Jun N-terminal kinase, p42/44, and p38 mitogen-activated protein kinases and the expression of intercellular adhesion molecule-1 in the lungs of SHS-exposed CXCL5(-/-) mice. Our findings suggest an important role for CXCL5 in augmenting leukocyte recruitment in SHS-induced lung inflammation, and provide novel insights into CXCL5-driven pathogenesis.


Subject(s)
Chemokine CXCL5/metabolism , Leukocytes/immunology , Lung/immunology , Lung/metabolism , Macrophages/immunology , Tobacco Smoke Pollution/adverse effects , Animals , Bone Marrow Cells , Chemokine CCL2/biosynthesis , Chemokine CXCL5/genetics , Cyclin-Dependent Kinases/biosynthesis , Environmental Exposure , Female , Inflammation/immunology , Inflammation/pathology , Intercellular Adhesion Molecule-1/biosynthesis , JNK Mitogen-Activated Protein Kinases/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/biosynthesis , Pulmonary Disease, Chronic Obstructive/immunology , Transcription Factor RelA/biosynthesis , Transcription Factors , Tumor Suppressor Protein p53/biosynthesis , p38 Mitogen-Activated Protein Kinases/biosynthesis , Cyclin-Dependent Kinase-Activating Kinase
19.
J Clin Invest ; 122(3): 974-86, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22326959

ABSTRACT

Neutrophils are essential for maintaining innate immune surveillance under normal conditions, but also represent a major contributor to tissue damage during inflammation. Neutrophil homeostasis is therefore tightly regulated. Cxcr2 plays a critical role in neutrophil homeostasis, as Cxcr2(-/-) mice demonstrate mild neutrophilia and severe neutrophil hyperplasia in the bone marrow. The mechanisms underlying these phenotypes, however, are unclear. We report here that Cxcr2 on murine neutrophils inhibits the IL-17A/G-CSF axis that regulates neutrophil homeostasis. Furthermore, enterocyte-derived Cxcl5 in the gut regulates IL-17/G-CSF levels and contributes to Cxcr2-dependent neutrophil homeostasis. Conversely, G-CSF was required for Cxcl5-dependent regulation of neutrophil homeostasis, and inhibition of IL-17A reduced plasma G-CSF concentrations and marrow neutrophil numbers in both Cxcl5(-/-) and Cxcr2(-/-) mice. Cxcr2(-/-) mice constitutively expressed IL-17A and showed increased numbers of IL-17A-producing cells in the lung, terminal ileum, and spleen. Most IL-17-producing splenocytes were responsive to IL-1ß plus IL-23 in vitro. Depletion of commensal microbes by antibiotic treatment in Cxcr2(-/-) mice markedly decreased IL-17A and G-CSF expression, neutrophilia, and marrow myeloid hyperplasia. These data suggest a critical role for Cxcr2, Cxcl5, and commensal bacteria in regulation of the IL-17/G-CSF axis and neutrophil homeostasis at mucosal sites and have implications for the development of treatments for pathologies resulting from either excessive or ineffective neutrophil responses.


Subject(s)
Chemokine CXCL5/metabolism , Gene Expression Regulation , Granulocyte Colony-Stimulating Factor/metabolism , Interleukin-17/metabolism , Neutrophils/cytology , Receptors, Interleukin-8B/metabolism , Animals , Cell Separation , Flow Cytometry , Homeostasis , Intestinal Mucosa/metabolism , Lung/metabolism , Mice , Mice, Transgenic , Models, Biological , Neutrophils/metabolism , Phenotype
20.
J Immunol ; 186(5): 3197-205, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21282514

ABSTRACT

CXCL5, a member of the CXC family of chemokines, contributes to neutrophil recruitment during lung inflammation, but its regulation is poorly understood. Because the T cell-derived cytokine IL-17A enhances host defense by triggering production of chemokines, particularly in combination with TNF-α, we hypothesized that IL-17A would enhance TNF-α-induced expression of CXCL5. Intratracheal coadministration of IL-17A and TNF-α in mice induced production of CXCL1, CXCL2, and CXCL5, which was associated with increased neutrophil influx in the lung at 8 and 24 h. The synergistic effects of TNF-α and IL17A were greatly attenuated in Cxcl5(-/-) mice at 24 h, but not 8 h, after exposure, a time when CXCL5 expression was at its peak in wild-type mice. Bone marrow chimeras produced using Cxcl5(-/-) donors and recipients demonstrated that lung-resident cells were the source of CXCL5. Using differentiated alveolar epithelial type II (ATII) cells derived from human fetal lung, we found that IL-17A enhanced TNF-α-induced CXCL5 transcription and stabilized TNF-α-induced CXCL5 transcripts. Whereas expression of CXCL5 required activation of NF-κB, IL-17A did not increase TNF-α-induced NF-κB activation. Apical costimulation of IL-17A and TNF-α provoked apical secretion of CXCL5 by human ATII cells in a transwell system, whereas basolateral costimulation led to both apical and basolateral secretion of CXCL5. The observation that human ATII cells secrete CXCL5 in a polarized fashion may represent a mechanism to recruit neutrophils in host defense in a fashion that discriminates the site of initial injury.


Subject(s)
Chemokine CXCL5/biosynthesis , Interleukin-17/physiology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Tumor Necrosis Factor-alpha/physiology , Acute Lung Injury/genetics , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Animals , Cell Migration Inhibition/genetics , Cell Migration Inhibition/immunology , Cells, Cultured , Chemokine CXCL1/biosynthesis , Chemokine CXCL2/biosynthesis , Chemokine CXCL5/deficiency , Chemokine CXCL5/metabolism , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Drug Therapy, Combination , Humans , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Interleukin-17/administration & dosage , Interleukin-17/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/pathology , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/metabolism , Pneumonia, Bacterial/pathology , Pulmonary Alveoli/pathology , Recombinant Proteins/administration & dosage , Recombinant Proteins/biosynthesis , Severity of Illness Index , Signal Transduction/genetics , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...