Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 14249, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26387967

ABSTRACT

Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

2.
Nanoscale ; 7(14): 6334-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25785667

ABSTRACT

Electric-field control of magnetic and transport properties of magnetic tunnel junctions has promising applications in spintronics. Here, we experimentally demonstrate a reversible electrical manipulation of memristance, magnetoresistance, and exchange bias in Co/CoO-ZnO/Co magnetic tunnel junctions, which enables the realization of four nonvolatile resistance states. Moreover, greatly enhanced tunneling magnetoresistance of 68% was observed due to the enhanced spin polarization of the bottom Co/CoO interface. The ab initio calculations further indicate that the spin polarization of the Co/CoO interface is as high as 73% near the Fermi level and plenty of oxygen vacancies can induce metal-insulator transition of the CoO(1-v) layer. Thus, the electrical manipulation mechanism on the memristance, magnetoresistance and exchange bias can be attributed to the electric-field-driven migration of oxygen ions/vacancies between very thin CoO and ZnO layers.

3.
Sci Rep ; 4: 3835, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24452305

ABSTRACT

The spin memristive devices combining memristance and tunneling magnetoresistance have promising applications in multibit nonvolatile data storage and artificial neuronal computing. However, it is a great challenge for simultaneous realization of large memristance and magnetoresistance in one nanoscale junction, because it is very hard to find a proper spacer layer which not only serves as good insulating layer for tunneling magnetoresistance but also easily switches between high and low resistance states under electrical field. Here we firstly propose to use nanon composite barrier layers of CoO-ZnO to fabricate the spin memristive Co/CoO-ZnO/Co magnetic tunnel junctions. The bipolar resistance switching ratio is high up to 90, and the TMR ratio of the high resistance state gets to 8% at room temperature, which leads to three resistance states. The bipolar resistance switching is explained by the metal-insulator transition of CoO(1-v) layer due to the migration of oxygen ions between CoO(1-v) and ZnO(1-v).

4.
J Comput Chem ; 32(7): 1298-302, 2011 May.
Article in English | MEDLINE | ID: mdl-21425287

ABSTRACT

First-principles calculations of undoped HfO(2) and cobalt-doped HfO(2) have been carried out to study the magnetic properties of the dielectric material. In contrast to previous reports, it was found that the native defects in HfO(2) could not induce strong ferromagnetism. However, the cobalt substituting hafnium is the most stable defect under oxidation condition, and the ferromagnetic (FM) coupling between the cobalt substitutions is favorable in various configurations. We found that the FM coupling is mediated by the threefold-coordinated oxygen atoms in monoclinic HfO(2) and could be further enhanced in electron-rich condition.


Subject(s)
Cobalt/chemistry , Hafnium/chemistry , Magnetics , Oxides/chemistry , Quantum Theory , Thermodynamics
5.
J Chem Phys ; 124(23): 234702, 2006 Jun 21.
Article in English | MEDLINE | ID: mdl-16821936

ABSTRACT

The electrical transport of DNA is closely related to the density of itinerant pi electrons because of the strong electron-lattice interaction. The resistivities of two typical DNA molecules [poly(dG)-poly(dC) and lambda-DNA] with varied densities of itinerant pi electrons are calculated. It is found that the dependence of the resistivity on the density of itinerant pi electrons is symmetrical about the half-filling state of itinerant pi electrons in poly(dG)-poly(dC). At the half-filling state, the Peierls phase transition takes place and poly(dG)-poly(dC) has a large resistivity. When the density of itinerant pi electrons departs far from the half-filling state, the resistivity of poly(dG)-poly(dC) becomes small. For lambda-DNA, there is no Peierls phase transition due to the aperiodicity of its base pair arrangement. The resistivity of poly(dG)-poly(dC) decreases with increasing length of the molecular chain, but the resistivity of lambda-DNA increases with increasing length. The conducting mechanisms for poly(dG)-poly(dC) and a few lambda-DNA molecules with varied densities of itinerant pi electrons are analyzed.


Subject(s)
DNA/chemistry , Electric Conductivity , Electrons , Models, Theoretical , Bacteriophage lambda/chemistry , DNA, Viral/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...