Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 753
Filter
1.
Arch Gerontol Geriatr ; 125: 105503, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38852372

ABSTRACT

BACKGROUND: Previous studies into relationship between high-density lipoprotein cholesterol (HDL-C) and cognitive decline were constrained to a single measurement, leaving the association between HDL-C variability and risk of cognitive decline unclear. METHODS: We identified 5930 participants from the China Health and Retirement Longitudinal Study (CHARLS) who were devoid for stroke, dementia, and memory-related diseases at baseline and underwent a minimum of 2 sequential health examinations during 2011-2015. Variability in HDL-C was defined as (1) variability independent of the mean (VIM), (2) average real variability (ARV), and (3) standard deviation (SD) of HDL-C change from baseline and follow-up visits. Cognitive function was evaluated in 2018 by Mini-mental state examination (MMSE) in the Chinese version. Logistic regression was employed to explore the association between HDL-C variability and cognitive decline. Odd ratios (OR) and 95 % confidence intervals (CI) were reported. RESULTS: The study included participants from CHARLS, mean age of 57.84±8.44 years and 44 % male. After adjustment for covariates, the highest quartile of VIM was associated with an increased risk of cognitive decline [OR:1.049, 95 %CI: 1.014-1.086] compared to the lowest quartile. For each SD increment of VIM, the OR was 1.015 (95 %CI:1.003-1.027). Strong dose-response relationships were identified (P for trend: 0.005). Consistent results were obtained for other measures of HDL-C variability (ARV and SD). Similar patterns were identified in different dimensions of cognition. CONCLUSIONS: Elevated HDL-C variability was associated with increased cognitive decline risk. Strategies to reducing HDL-C variability may lower the risks of cognitive decline among the general population.

2.
PeerJ ; 12: e17559, 2024.
Article in English | MEDLINE | ID: mdl-38854798

ABSTRACT

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Subject(s)
Apoptosis , Arsenic Trioxide , Cell Movement , Cell Proliferation , Cell Survival , Colorectal Neoplasms , TRPM Cation Channels , Humans , TRPM Cation Channels/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , Arsenic Trioxide/pharmacology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , HCT116 Cells , Cell Movement/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Oxides/pharmacology , Antineoplastic Agents/pharmacology , Neoplasm Invasiveness , Arsenicals/pharmacology
3.
Food Res Int ; 187: 114395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763655

ABSTRACT

Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated. The results showed that the modified QMPs with different esterification degrees were successfully prepared by the mild alkali treatment, and the primary chemical structure (e.g., compositional monosaccharides and glycosidic linkages) of the native QMP was overall stable after the de-esterified modification. Furthermore, the results revealed that the antioxidant capacity, antiglycation effect, prebiotic potential, and immunostimulatory activity of the native QMP were negatively correlated to its esterification degree. In addition, both native and modified QMPs exerted immunostimulatory effects through activating the TLR4/NF-κB signaling pathway. These results are conducive to unveiling the precise structure-function relationships of QMP, and can also promote its applications as functional foods or fortified ingredients.


Subject(s)
Antioxidants , Chenopodium quinoa , Esterification , Chenopodium quinoa/chemistry , Structure-Activity Relationship , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Pectins/chemistry , Polysaccharides/chemistry , Prebiotics , Animals , Mice , Functional Food , RAW 264.7 Cells , NF-kappa B/metabolism
4.
Coron Artery Dis ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767051

ABSTRACT

BACKGROUND: Previous reports have suggested that coronary computed tomography angiography (CCTA)-based radiomics analysis is a potentially helpful tool for assessing vulnerable plaques. We aimed to investigate whether coronary radiomic analysis of CCTA images could identify vulnerable plaques in patients with stable angina pectoris. METHODS: This retrospective study included patients initially diagnosed with stable angina pectoris. Patients were randomly divided into either the training or test dataset at an 8 : 2 ratio. Radiomics features were extracted from CCTA images. Radiomics models for predicting vulnerable plaques were developed using the support vector machine (SVM) algorithm. The model performance was assessed using the area under the curve (AUC); the accuracy, sensitivity, and specificity were calculated to compare the diagnostic performance using the two cohorts. RESULTS: A total of 158 patients were included in the analysis. The SVM radiomics model performed well in predicting vulnerable plaques, with AUC values of 0.977 and 0.875 for the training and test cohorts, respectively. With optimal cutoff values, the radiomics model showed accuracies of 0.91 and 0.882 in the training and test cohorts, respectively. CONCLUSION: Although further larger population studies are necessary, this novel CCTA radiomics model may identify vulnerable plaques in patients with stable angina pectoris.

5.
J Endocr Soc ; 8(6): bvae071, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38721109

ABSTRACT

Background: Customized and standard automated insulin delivery (AID) systems for use in pregnancies of women with preexisting type 1 diabetes (T1D) are being developed and tested to achieve pregnancy appropriate continuous glucose monitoring (CGM) targets. Guidance on the use of CGM for treatment decisions during pregnancy in the United States is limited. Methods: Ten pregnant women with preexisting T1D participated in a trial evaluating at-home use of a pregnancy-specific AID system. Seven-point self-monitoring of blood glucose (SMBG) was compared to the closest sensor glucose (Dexcom G6 CGM) value biweekly to assess safety and reliability based on the 20%/20 mg/dL criteria. Results: All participants completed the study with 7 participants satisfying the safety and reliability criteria with a mean absolute relative difference of 10.3%. Three participants did not fulfill the criteria, mainly because the frequency of SMBG did not meet the requirements. Conclusion: Dexcom G6 CGM is safe and accurate in the real-world setting for use in pregnant women with preexisting T1D with reduced SMBG testing as part of a pregnancy-specific AID system.

6.
Cancer Res Commun ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722600

ABSTRACT

Immune-checkpoint therapy (ICB) has conferred significant and durable clinical benefit to some cancer patients. However, most patients do not respond to ICB, and reliable biomarkers of ICB response are needed to improve patient stratification. Here, we performed a transcriptome-wide meta-analysis across 1,486 tumors from ICB-treated patients and tumors with expected ICB outcomes based on microsatellite status. Using a robust transcriptome deconvolution approach, we inferred cancer and stroma-specific gene expression differences and identified cell-type specific features of ICB response across cancer types. Consistent with current knowledge, stromal expression of CXCL9, CXCL13, and IFNG were the top determinants of favorable ICB response. In addition, we identified a group of potential immune-suppressive genes, including FCER1A, associated with poor response to ICB. Strikingly, PD-L1 expression in stromal cells, but not cancer cells, is correlated with ICB response across cancer types. Furthermore, the unbiased transcriptome-wide analysis failed to identify cancer-cell intrinsic expression signatures of ICB response conserved across tumor types, suggesting that cancer cells lack tissue-agnostic transcriptomic features of ICB response.

7.
Curr Opin Chem Biol ; 80: 102469, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776764

ABSTRACT

In vivo luminescence imaging in the second near-infrared window (NIR-II, 1000-2000 nm) is a potent technique for observing deep-tissue life activities, leveraging reduced light scattering, minimized autofluorescence, and moderate absorption attenuation to substantially enhance image contrast. Pushing the frontiers of NIR-II luminescence imaging forward, moving from static to dynamic event visualization, monochromatic to multicolor images, and fundamental research to clinical applications, necessitates the development of novel luminophores featuring bright emission, extendable wavelength, and optimal biocompatibility. Recently, lanthanide-dye hybrid luminophores (LDHLs) are gaining increasing attention for their wavelength extensibility, molecular size, narrowband emission, mega stokes shift, long lifetime, and high photostability. In this review, we will summarize the recent advances of NIR-II LDHLs and their applications in imaging and analysis of living mammals, and discuss future challenges in designing new LDHLs for deep-tissue imaging.

8.
Br J Pharmacol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721797

ABSTRACT

Neuroinflammation is initiated in response to a variety of endogenous and exogenous sources. As the resident macrophages of the central nervous system, the polarization of microglia into either the M1 pro-inflammatory phenotype or the M2 anti-inflammatory phenotype holds great promise as a therapeutic strategy for neuroinflammation. Natural products, comprising a vital chemical library with distinctive structures and diverse functions, have been extensively employed to modulate microglial polarization for the treatment of neuroinflammation. In this review, we present up-to-date and extensive insights into the therapeutic effects and underlying mechanisms of natural products in the context of neuroinflammation. Furthermore, the review aims to present a new perspective by focusing on the targets of natural compounds, elucidating the molecular mechanisms and guiding the transition from natural-derived lead compounds to potential anti-neuroinflammatory drugs. Additionally, we provide a comprehensive overview of the challenges and limitations associated with the utilization of natural products for neuroinflammation therapy.

9.
Acta Pharmacol Sin ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702501

ABSTRACT

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.

10.
Ultrason Sonochem ; 106: 106895, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705082

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) leaf has abundant rhamnogalacturonan-I enriched pectic polysaccharides, which exert various health-promoting effects. Nevertheless, the potential relationship between the chemical structure and the biological function of pectic polysaccharides from Tartary buckwheat leaves (TBP) remains unclear. Therefore, to bridge the gap between the chemical structure and the biological function of TBP, the impacts of ultrasound-assisted Fenton degradation (UFD) and mild alkaline de-esterification (MAD) on structural properties and biological effects of TBP were systematically studied. Compared with the native TBP (molecular mass, 9.537 × 104 Da), the molecular masses of degraded TBPs (TBP-MMW, 4.811 × 104 Da; TBP-LMW, 2.101 × 104 Da) were significantly reduced by the UFD modification, while their primary chemical structures were overall stable. Besides, compared with the native TBP (esterification degree, 22.73 %), the esterification degrees of de-esterified TBPs (TBP-MDE, 14.27 %; TBP-LDE, 6.59 %) were notably reduced by the MAD modification, while their primary chemical structures were also overall stable. Furthermore, the results revealed that both UFD and MAD modifications could significantly improve the antioxidant, antiglycation, and immunostimulatory effects of TBP. Indeed, TBP's biological effects were negatively correlated to its molecular mass and esterification degree, while positively linked to its free uronic acids. The findings demonstrate that both UFD and MAD modifications are promising techniques for the structural modification of TBP, which can remarkedly promote its biological effects. Besides, the present results are conducive to better understanding TBP's structure-bioactivity relationship.


Subject(s)
Fagopyrum , Pectins , Plant Leaves , Ultrasonic Waves , Plant Leaves/chemistry , Fagopyrum/chemistry , Esterification , Pectins/chemistry , Pectins/pharmacology , Iron/chemistry , Hydrogen Peroxide/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Animals
11.
Mol Med Rep ; 30(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38785160

ABSTRACT

Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis­associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.


Subject(s)
Ferroptosis , Signal Transduction , Stroke , Ferroptosis/drug effects , Humans , Stroke/metabolism , Stroke/drug therapy , Signal Transduction/drug effects , Animals , Molecular Targeted Therapy , Medicine, Chinese Traditional/methods
12.
Cancer Lett ; 593: 216956, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735381

ABSTRACT

Anti-CDK4/6 therapy has been employed for the treatment for head and neck squamous cell carcinoma (HNSCC) with CDK4/6 hyperactivation, but the response rate is relatively low. In this study, we first showed that CDK4 and CDK6 was over-expressed and conferred poor prognosis in HNSCC. Moreover, in RB-positive HNSCC, STAT3 signaling was activated induced by CDK4/6 inhibition and STAT3 promotes RB deficiency by upregulation of MYC. Thirdly, the combination of Stattic and CDK4/6 inhibitor results in striking anti-tumor effect in vitro and in Cal27 derived animal models. Additionally, phospho-STAT3 level negatively correlates with RB expression and predicts poor prognosis in patients with HNSCC. Taken together, our findings suggest an unrecognized function of STAT3 confers to CDK4/6 inhibitors resistance and presenting a promising combination strategy for patients with HNSCC.

13.
Environ Toxicol ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572829

ABSTRACT

The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, while PFOA increased in responders. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.

14.
Acta Paediatr ; 113(6): 1228-1235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578009

ABSTRACT

AIM: Parents of children born preterm have identified outcomes to be measured for audit and research at 18-24 months of age: child well-being, quality of life/function, socio-emotional/behavioural outcomes, respiratory, feeding, sleeping, and caregiver mental health. The aim was to identify the best tools to measure these seven domains. METHODS: Seven working groups completed literature reviews and evaluated potential tools to measure these outcomes in children aged 18-24 months. A group of experts and parents voted on the preferred tools in a workshop and by questionnaire. Consensus was 80% agreement. RESULTS: Consensus was obtained for seven brief, inexpensive, parent friendly valid measures available in English or French for use in a minimum dataset and potential alternative measures for use in funded research. CONCLUSION: Valid questionnaires and tools to measure parent-identified outcomes in young preterm children exist. This study will facilitate research and collection of data important to families.


Subject(s)
Infant, Extremely Premature , Humans , Infant , Infant, Newborn , Quality of Life , Parents/psychology , Surveys and Questionnaires , Outcome Assessment, Health Care
15.
Ther Adv Med Oncol ; 16: 17588359241234504, 2024.
Article in English | MEDLINE | ID: mdl-38449561

ABSTRACT

Background: Some studies of dual-targeted therapy (DTT) targeting epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition (MET) have shown promising efficacy in non-small-cell lung cancer (NSCLC). Consequently, patient management following DTT resistance has gained significance. However, the underlying resistance mechanisms and clinical outcomes in these patients remain unclear. Objectives: This study aimed to delineate the molecular characteristics and survival outcomes of patients with NSCLC harboring EGFR mutations and acquired MET amplification after developing resistance to DTT. Design: We conducted a retrospective analysis of patients with NSCLC with EGFR mutations and acquired MET amplification who exhibited resistance to EGFR/MET DTT. Methods: Next-generation sequencing (NGS) was performed on patients with available tissue samples before and/or after the development of resistance to DTT. Stratified analyses were carried out based on data sources and subsequent salvage treatments. Univariate/multivariate Cox regression models and survival analyses were employed to explore potential independent prognostic factors. Results: The study included 77 NSCLC patients, with NGS conducted on 19 patients. We observed many resistance mechanisms, including EGFR-dependent pathways (4/19, 21.1%), MET-dependent pathways (2/19, 10.5%), EGFR/MET co-dependent pathways (2/19, 10.5%), and EGFR/MET-independent resistance mechanisms (11/19, 57.9%). Post-progression progression-free survival (pPFS) and post-progression overall survival (pOS) significantly varied among patients who received the best supportive care (BSC), targeted therapy, or chemotherapy (CT), with median pPFS of 1.5, 3.9, and 4.9 months, respectively (p = 0.003). Median pOS were 2.3, 7.7, and 9.2 months, respectively (p < 0.001). The number of treatment lines following DTT resistance and the Eastern Cooperative Oncology Group performance status emerged as the independent prognostic factors. Conclusion: This study revealed a heterogeneous landscape of resistance mechanisms to EGFR/MET DTT, with a similar prevalence of on- and off-target mechanisms. Targeted therapy or CT, as compared to BSC, exhibited the potential to improve survival outcomes for patients with advanced NSCLC following resistance to DTT.

16.
Article in English | MEDLINE | ID: mdl-38547026

ABSTRACT

OBJECTIVE: To evaluate the muscle thickness and walking test in people with haemophilia A (PWH) and their correlation to joint health and functional impairments. DESIGN: Cross-sectional study. RESULTS: 29 severe/moderate PWH were enrolled. Muscle thickness of quadriceps and medial gastrocnemius were measured using ultrasound. Joint health and functional capacity were assessed using Haemophilia Joint Health Score (HJHS), Haemophilia Early Arthropathy Detection with Ultrasound (HEAD-US), 6-Minute Walking test (6MWT), Haemophilia Quality of Life Questionnaire for Adults (Haem-A-QoL), and Haemophilia Activities List (HAL). Quadriceps muscle thickness significantly correlated with HJHS knee, HEAD-US knee, and HAL. Calf muscle thickness significantly correlated with the HJHS ankle. After adjusted age and BMI, calf muscle thickness was inversely associated with the HJHS ankle. 6MWT was found to significantly correlate with HJHS total, HEAD-US total, Haem-A-QoL, and HAL. CONCLUSION: Muscle thickness and the distance of 6MWT were linked to assessment of joint health, quality of life and activity participation in PWH. Ultrasound measurement of muscle thickness and walking test appear to be useful tools for the assessment of joint health and functional status in PWH.

17.
World J Gastroenterol ; 30(8): 901-918, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38516242

ABSTRACT

BACKGROUND: Metadherin (MTDH) is a key oncogene in most cancer types, including hepatocellular carcinoma (HCC). Notably, MTDH does not affect the stemness pheno-type or immune infiltration of HCC. AIM: To explore the role of MTDH on stemness and immune infiltration in HCC. METHODS: MTDH expression in HCC tissues was detected using TCGA and GEO databases. Immunohistochemistry was used to analyze the tissue samples. MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines. The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays. Next, we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium. Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR. Flow cytometry, immunofluorescence, and tumor sphere formation assays were used to characterize stem-like cells. The effects of MTDH inhibition on tumor growth were evaluated in vivo. The correlation of MTDH with immune cells, immunomodulators, and chemokines was analyzed using ssGSEA and TISIDB databases. RESULTS: HCC tissues expressed higher levels of MTDH than normal liver tissues. High MTDH expression was associated with a poor prognosis. HCC cells overexpressing MTDH exhibited stronger invasion and migration abilities, exhibited a stem cell-like phenotype, and formed spheres; however, MTDH inhibition attenuated these effects. MTDH inhibition suppressed HCC progression and CD133 expression in vivo. MTDH was positively correlated with immature dendritic, T helper 2 cells, central memory CD8+ T, memory B, activated dendritic, natural killer (NK) T, NK, activated CD4+ T, and central memory CD4+ T cells. MTDH was negatively correlated with activated CD8+ T cells, eosinophils, activated B cells, monocytes, macrophages, and mast cells. A positive correlation was observed between the MTDH level and CXCL2 expression, whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression. CONCLUSION: High levels of MTDH expression in patients with HCC are associated with poor prognosis, promoting tumor stemness, immune infiltration, and HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes , Transcription Factors/genetics , Stem Cells/pathology , Phenotype , Cell Line, Tumor , Membrane Proteins/genetics , RNA-Binding Proteins/genetics
18.
Nat Commun ; 15(1): 1567, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38378825

ABSTRACT

Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet's free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.

19.
J Ovarian Res ; 17(1): 47, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383460

ABSTRACT

BACKGROUND: Evidence from the Istanbul consensus workshop suggests correlations between morphological parameters and embryo developments. 8-cell embryos are the best blastomere stage on day 3. No good quality evidence exists to support high-quality embryonic selection following blastulation and clinical outcomes. This study aimed to investigate the factors that affect blastocyst formation, blastocyst quality, and clinical outcomes of high-quality cleavage-stage embryos in fresh cycles. METHODS: This study was a retrospective analysis of 9608 high-quality cleavage-stage embryos from 2987 couples between January 2017 to June 2021, namely 1520 embryos categorized as "812" (8-cell, grade 2, mild fragmentation), 2961 as "821" (8-cell, grade 2, mild asymmetry), 896 as "711" (7-cell, grade 1), and 517 as "911" (9-cell, grade 1) compared with 3714 embryos categorized as "811" (8-cell, grade 1). The primary outcomes were clinical pregnancy rate (CPR) and live birth rate (LBR). Blastulation rate (BR), available late blastocyst rate (ABR) and high-quality late blastocyst rate (HBR) were secondary outcome measures. RESULTS: BR, ABR, and HBR had significant differences among the five groups (P < 0.001), while CPR and LBR were also significantly different in cleavage-stage fresh transfer (P < 0.01). The multivariable multilevel logistic regression analysis revealed a significant association between cell number, cell size, blastocyst development and clinical outcomes. For 7 to 9-cell highest-quality embryo, mild fragmentation and more blastomeres were more conducive to blastocyst formation and clinical outcomes. While cleavage-stage embryos developed into blastocysts, the negative impact of their initial morphology on clinical outcomes would be erased. CONCLUSIONS: Our study firstly evaluated blastocyst development and clinical outcomes of high-quality cleavage-stage embryos in fresh cycles, with rankings of 811, 812, 911, 821, and 711. We found the initial morphological characteristics of the high-quality cleavage-stage embryos did not adversely impact clinical outcomes, even as they progressed to the blastocyst stage.


Subject(s)
Birth Rate , Embryo Transfer , Pregnancy , Female , Humans , Retrospective Studies , Pregnancy Rate , Embryonic Development , Blastocyst , Live Birth
20.
Environ Int ; 184: 108466, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38310816

ABSTRACT

The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the Ni0.60Co0.40Ox NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of Ni0.60Co0.40Ox NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl- and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.


Subject(s)
Benzhydryl Compounds , Environmental Pollutants , Water Pollutants, Chemical , Oxides , Wastewater , Oxidation-Reduction , Phenols/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...