Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38733029

ABSTRACT

Structural engineers are often required to draw two-dimensional engineering sketches for quick structural analysis, either by hand calculation or using analysis software. However, calculation by hand is slow and error-prone, and the manual conversion of a hand-drawn sketch into a virtual model is tedious and time-consuming. This paper presents a complete and autonomous framework for converting a hand-drawn engineering sketch into an analyzed structural model using a camera and computer vision. In this framework, a computer vision object detection stage initially extracts information about the raw features in the image of the beam diagram. Next, a computer vision number-reading model transcribes any handwritten numerals appearing in the image. Then, feature association models are applied to characterize the relationships among the detected features in order to build a comprehensive structural model. Finally, the structural model generated is analyzed using OpenSees. In the system presented, the object detection model achieves a mean average precision of 99.1%, the number-reading model achieves an accuracy of 99.0%, and the models in the feature association stage achieve accuracies ranging from 95.1% to 99.5%. Overall, the tool analyzes 45.0% of images entirely correctly and the remaining 55.0% of images partially correctly. The proposed framework holds promise for other types of structural sketches, such as trusses and frames. Moreover, it can be a valuable tool for structural engineers that is capable of improving the efficiency, safety, and sustainability of future construction projects.

2.
Sensors (Basel) ; 23(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37299882

ABSTRACT

With the rise and development of smart infrastructures, there has been a great demand for installing automatic monitoring systems on bridges, which are key members of transportation networks. In this regard, utilizing the data collected by the sensors mounted on the vehicles passing over the bridge can reduce the costs of the monitoring systems, compared with the traditional systems where fixed sensors are mounted on the bridge. This paper presents an innovative framework for determining the response and for identifying modal characteristics of the bridge, utilizing only the accelerometer sensors on the moving vehicle passing over it. In the proposed approach, the acceleration and displacement response of some virtual fixed nodes on the bridge is first determined using the acceleration response of the vehicle axles as the input. An inverse problem solution approach based on a linear and a novel cubic spline shape function provides the preliminary estimations of the bridge's displacement and acceleration responses, respectively. Since the inverse solution approach is only capable of determining the response signal of the nodes with high accuracy in the vicinity of the vehicle axles, a new moving-window signal prediction method based on auto-regressive with exogenous time series models (ARX) is proposed to complete the responses in the regions with large errors (invalid regions). The mode shapes and natural frequencies of the bridge are identified using a novel approach that integrates the results of singular value decomposition (SVD) on the predicted displacement responses and frequency domain decomposition (FDD) on the predicted acceleration responses. To evaluate the proposed framework, various numerical but realistic models for a single-span bridge under the effect of a moving mass are considered; the effects of different levels of ambient noise, the number of axles of the passing vehicle, and the effect of its speed on the accuracy of the method are investigated. The results show that the proposed method can identify the characteristics of the three main modes of the bridge with high accuracy.


Subject(s)
Algorithms , Noise , Time Factors , Monitoring, Physiologic , Acceleration
SELECTION OF CITATIONS
SEARCH DETAIL
...