Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Purinergic Signal ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38910192

ABSTRACT

Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of ß-amyloid (Aß) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aß production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.

2.
Heliyon ; 10(2): e24357, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293443

ABSTRACT

Background: Fibrosis is a heavy burden on the global healthcare system. Recently, an increasing number of studies have demonstrated that Extracellular vesicles play an important role in intercellular communication under both physiological and pathological conditions. This study aimed to explore the role of extracellular vesicles' in fibrosis using bibliometric methods. Methods: Original articles and reviews related to extracellular vesicles and fibrosis were obtained from the Web of Science Core Collection database on November 9, 2022. VOSviewer was used to obtain general information, including co-institution, co-authorship, and co-occurrence visualization maps. The CiteSpace software was used to analyze citation bursts of keywords and references, a timeline view of the top clusters of keywords and cited articles, and the dual map. R package "bibliometrix" was used to analyze annual production, citation per year, collaboration network between countries/regions, thematic evolution map, and historiography network. Results: In total, 3376 articles related to extracellular vesicles and fibrosis published from 2013 to 2022 were included in this study, with China and the United States being the top contributors. Shanghai Jiao Tong University has the highest number of publications. The main collaborators were Giovanni Camussi, Stefania Bruno, Marta Tepparo, and Cristina Grange. Journals related to molecular, biology, genetics, health, immunology, and medicine tended to publish literature on extracellular vesicles and fibrosis. "Recovery," "heterogeneity," "degradation," "inflammation," and "mesenchymal stem cells" are the keywords in this research field. Literature on extracellular vesicles and fibrosis associated with several diseases, including "kidney disease," "rheumatoid arthritis," and "skin regeneration" may be the latest hot research field. Conclusions: This study provides a comprehensive perspective on extracellular vesicles and fibrosis through a bibliometric analysis of articles published between 2013 and 2022. We identified the most influential countries, institutions, authors, and journals. We provide information on recent research frontiers and trends for scholars interested in the field of extracellular vesicles and fibrosis. Their role in biological processes has great potential to initiate a new upsurge in future research.

3.
Shock ; 61(2): 283-293, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38010091

ABSTRACT

ABSTRACT: Recent research has revealed that aerobic glycolysis has a strong correlation with sepsis-associated pulmonary fibrosis (PF). However, at present, the mechanism and pathogenesis remain unclear. We aimed to test the hypothesis that the adenosine monophosphate-activated protein kinase (AMPK) activation and suppression of hypoxia-inducible factor 1α (HIF-1α)-induced aerobic glycolysis play a central role in septic pulmonary fibrogenesis. Cellular experiments demonstrated that lipopolysaccharide increased fibroblast activation through AMPK inactivation, HIF-1α induction, alongside an augmentation of aerobic glycolysis. By contrast, the effects were reversed by AMPK activation or HIF-1α inhibition. In addition, pretreatment with metformin, which is an AMPK activator, suppresses HIF-1α expression and alleviates PF associated with sepsis, which is caused by aerobic glycolysis, in mice. Hypoxia-inducible factor 1α knockdown demonstrated similar protective effects in vivo . Our research implies that targeting AMPK activation and HIF-1α-induced aerobic glycolysis with metformin might be a practical and useful therapeutic alternative for sepsis-associated PF.


Subject(s)
Metformin , Pulmonary Fibrosis , Sepsis , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , AMP-Activated Protein Kinases/metabolism , Hypoxia , Sepsis/complications , Sepsis/drug therapy , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
4.
Front Public Health ; 10: 967829, 2022.
Article in English | MEDLINE | ID: mdl-36203683

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) becomes a worldwide public health threat. Increasing evidence proves that COVID-19-induced acute injuries could be reversed by a couple of therapies. After that, post-COVID-19 fibrosis (PCF), a sequela of "Long COVID," earns rapidly emerging concerns. PCF is associated with deteriorative lung function and worse quality of life. But the process of PCF remains speculative. Therefore, we aim to conduct a bibliometric analysis to explore the overall structure, hotspots, and trend topics of PCF. Materials and methods: A comprehensive search was performed in the Web of Science core database to collect literature on PCF. Search syntax included COVID-19 relevant terms: "COVID 19," "COVID-19 Virus Disease," "COVID-19 Virus Infection," "Coronavirus Disease-19," "2019 Novel Coronavirus Disease," "2019 Novel Coronavirus Infection," "SARS Coronavirus 2 Infection," "COVID-19 Pandemic," "Coronavirus," "2019-nCoV," and "SARS-CoV-2"; and fibrosis relevant terms: "Fibrosis," "Fibroses," and "Cirrhosis." Articles in English were included. Totally 1,088 publications were enrolled. Searching results were subsequentially exported and collected for the bibliometric analysis. National, organizational, and individual level data were analyzed and visualized through biblioshiny package in the R, VOSviewer software, the CiteSpace software, and the Graphical Clustering Toolkit (gCLUTO) software, respectively. Results: The intrinsic structure and development in the field of PCF were investigated in the present bibliometric analysis. The topmost keywords were "COVID-19" (occurrences, 636) surrounded by "SARS-CoV-2" (occurrences, 242), "coronavirus" (occurrences, 123), "fibrosis" (occurrences, 120), and "pneumonia" (occurrences, 94). The epidemiology, physiopathology, diagnosis, and therapy of PCF were extensively studied. After this, based on dynamic analysis of keywords, hot topics sharply changed from "Wuhan," "inflammation," and "cytokine storm" to "quality of life" and "infection" through burst detection; from "acute respiratory syndrome," "cystic-fibrosis" and "fibrosis" to "infection," "COVID-19," "quality-of-life" through thematic evolution; from "enzyme" to "post COVID." Similarly, co-cited references analysis showed that topics of references with most citations shift from "pulmonary pathology" (cluster 0) to "COVID-19 vaccination" (cluster 6). Additionally, the overview of contributors, impact, and collaboration was revealed. Summarily, the USA stood out as the most prolific, influential, and collaborative country. The Udice French Research University, Imperial College London, Harvard University, and the University of Washington represented the largest volume of publications, citations, H-index, and co-authorships, respectively. Dana Albon was the most productive and cited author with the strongest co-authorship link strength. Journal of Cystic Fibrosis topped the list of prolific and influential journals. Conclusion: Outcomes gained from this study assisted professionals in better realizing PCF and would guide future practices. Epidemiology, pathogenesis, and therapeutics were study hotspots in the early phase of PCF research. As the spread of the COVID-19 pandemic and progress in this field, recent attention shifted to the quality of life of patients and post-COVID comorbidities. Nevertheless, COVID-19 relevant infection and vaccination were speculated to be research trends with current and future interest. International cooperation as well as in-depth laboratory experiments were encouraged to promote further explorations in the field of PCF.


Subject(s)
COVID-19 , Bibliometrics , COVID-19/complications , COVID-19/epidemiology , Cicatrix , Cytokines , Humans , Pandemics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
5.
Sci Rep ; 6: 20141, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26821752

ABSTRACT

Wnt-induced secreted protein-1 (WISP1) is an extracellular matrix protein that has been reported in cancer researches. Our previous studies on WISP1 implied it could be a harmful mediator in septic mice. However, its role in liver ischemia reperfusion (I/R) injury is unknown. This study investigated the effects of WISP1 on liver I/R damage. Male C57BL/6 wild-type mice were used to undergo 60 min segmental (70%) ischemia. WISP1 expression was measured after indicated time points of reperfusion. Anti-WISP1 antibody was injected intraperitoneally to mice. Toll-like receptor 4 (TLR4) knockout mice and TIR-domain-containing adaptor inducing interferon-ß (TRIF) knockout mice were adopted in this study. WISP1 was significantly enhanced after 6 h of reperfusion when compared with sham treated mice and significantly decreased either by TLR4 knockout mice or TRIF knockout mice. Anti-WISP1 antibody significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), pathological changes and pro-inflammatory cytokine levels in the mice following I/R. Furthermore, significantly increased serum transaminase levels were found in C57 wild-type mice treated with recombinant WISP1 protein, but not found in TLR4 knockout or TRIF knockout mice subjected to liver I/R. Taken together, WISP1 might contribute to hepatic ischemia reperfusion injury in mice and possibly depends on TLR4/TRIF signaling.


Subject(s)
CCN Intercellular Signaling Proteins/biosynthesis , Gene Expression Regulation , Liver/metabolism , Proto-Oncogene Proteins/biosynthesis , Reperfusion Injury/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , CCN Intercellular Signaling Proteins/genetics , Liver/pathology , Male , Mice , Mice, Knockout , Proto-Oncogene Proteins/genetics , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...