Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 20(6): 11116-11138, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37322974

ABSTRACT

The biological cross-sectional images majorly consist of closed-loop structures, which are suitable to be represented by the second-order shearlet system with curvature (Bendlet). In this study, an adaptive filter method for preserving textures in the bendlet domain is proposed. The Bendlet system represents the original image as an image feature database based on image size and Bendlet parameters. This database can be divided into image high-frequency and low-frequency sub-bands separately. The low-frequency sub-bands adequately represent the closed-loop structure of the cross-sectional images and the high-frequency sub-bands accurately represent the detailed textural features of the images, which reflect the characteristics of Bendlet and can be effectively distinguished from the Shearlet system. The proposed method takes full advantage of this feature, then selects the appropriate thresholds based on the images' texture distribution characteristics in the database to eliminate noise. The locust slice images are taken as an example to test the proposed method. The experimental results show that the proposed method can significantly eliminate the low-level Gaussian noise and protect the image information compared with other popular denoising algorithms. The PSNR and SSIM obtained are better than other methods. The proposed algorithm can be effectively applied to other biological cross-sectional images.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Signal-To-Noise Ratio , Phantoms, Imaging , Normal Distribution , Image Processing, Computer-Assisted/methods
2.
Front Plant Sci ; 13: 1042016, 2022.
Article in English | MEDLINE | ID: mdl-36523632

ABSTRACT

Flower classification is of great importance to the research fields of plants, food, and medicine. Due to more abundant information on three-dimensional (3D) flower models than two-dimensional 2D images, it makes the 3D models more suitable for flower classification tasks. In this study, a feature extraction and classification method were proposed based on the 3D models of Chinese roses. Firstly, the shape distribution method was used to extract the sharpness and contour features of 3D flower models, and the color features were obtained from the Red-Green-Blue (RGB) color space. Then, the RF-OOB method was employed to rank the extracted flower features. A shape descriptor based on the unique attributes of Chinese roses was constructed, χ2 distance was adopted to measure the similarity between different Chinese roses. Experimental results show that the proposed method was effective for the retrieval and classification tasks of Chinese roses, and the average classification accuracy was approximately 87%, which can meet the basic retrieval requirements of 3D flower models. The proposed method promotes the classification of Chinese roses from 2D space to 3D space, which broadens the research method of flower classification.

3.
Entropy (Basel) ; 24(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36554159

ABSTRACT

Because of noise interference, improper exposure, and the over thickness of human tissues, the detailed information of DR (digital radiography) images can be masked, including unclear edges and reduced contrast. An image-enhancement algorithm based on wavelet multiscale decomposition is proposed to address the shortcomings of existing single-scale image-enhancement algorithms. The proposed algorithm is based on Shannon-Cosine wavelets by taking advantage of the interpolation, smoothness, tight support, and normalization properties. Next a multiscale interpolation wavelet operator is constructed to divide the image into several sub-images from high frequency to low frequency, and to perform different multi-scale wavelet transforms on the detailed image of each channel. So that the most subtle and diagnostically useful information in the image can be effectively enhanced. Moreover, the image will not be over-enhanced and combined with the high contrast sensitivity of the human eye's visual system in smooth regions, different attenuation coefficients are used for different regions to achieve the purpose of suppressing noise while enhancing details. The results obtained by some simulations show that this method can effectively eliminate the noise in the DR image, and the enhanced DR image detail information is clearer than before while having high effectiveness and robustness.

4.
Entropy (Basel) ; 24(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35885092

ABSTRACT

Magnetic resonance imaging (MRI) plays an important role in disease diagnosis. The noise that appears in MRI images is commonly governed by a Rician distribution. The bendlets system is a second-order shearlet transform with bent elements. Thus, the bendlets system is a powerful tool with which to represent images with curve contours, such as the brain MRI images, sparsely. By means of the characteristic of bendlets, an adaptive denoising method for microsection images with Rician noise is proposed. In this method, the curve contour and texture can be identified as low-frequency components, which is not the case with other methods, such as the wavelet, shearlet, and so on. It is well known that the Rician noise belongs to a high-frequency channel, so it can be easily removed without blurring the clarity of the contour. Compared with other algorithms, such as the shearlet transform, block matching 3D, bilateral filtering, and Wiener filtering, the values of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) obtained by the proposed method are better than those of other methods.

5.
Sensors (Basel) ; 20(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962133

ABSTRACT

Weight is an important indicator of the growth and development of dairy cows. The traditional static weighing methods require considerable human and financial resources, and the existing dynamic weighing algorithms do not consider the influence of the cow motion state on the weight curve. In this paper, a dynamic weighing algorithm for cows based on a support vector machine (SVM) and empirical wavelet transform (EWT) is proposed for classification and analysis. First, the dynamic weight curve is obtained by using a weighing device placed along a cow travel corridor. Next, the data are preprocessed through valid signal acquisition, feature extraction, and normalization, and the results are divided into three active degrees during motion for low, medium, and high grade using the SVM algorithm. Finally, a mean filtering algorithm, the EWT algorithm, and a combined periodic continuation-EWT algorithm are used to obtain the dynamic weight values. Weight data were collected for 910 cows, and the experimental results displayed a classification accuracy of 98.6928%. The three algorithms were used to calculate the dynamic weight values for comparison with real values, and the average error rates were 0.1838%, 0.6724%, and 0.9462%. This method can be widely used at farms and expand the current knowledgebase regarding the dynamic weighing of cows.


Subject(s)
Body Weight , Support Vector Machine , Wavelet Analysis , Algorithms , Animals , Cattle , Female , Humans , Motion
6.
ScientificWorldJournal ; 2014: 417486, 2014.
Article in English | MEDLINE | ID: mdl-25050394

ABSTRACT

The Perona-Malik equation is a famous image edge-preserved denoising model, which is represented as a nonlinear 2-dimension partial differential equation. Based on the homotopy perturbation method (HPM) and the multiscale interpolation theory, a dynamic sparse grid method for Perona-Malik was constructed in this paper. Compared with the traditional multiscale numerical techniques, the proposed method is independent of the basis function. In this method, a dynamic choice scheme of external grid points is proposed to eliminate the artifacts introduced by the partitioning technique. In order to decrease the calculation amount introduced by the change of the external grid points, the Newton interpolation technique is employed instead of the traditional Lagrange interpolation operator, and the condition number of the discretized matrix different equations is taken into account of the choice of the external grid points. Using the new numerical scheme, the time complexity of the sparse grid method for the image denoising is decreased to O(4 (J+2j)) from O(4(3J)), (j ≪ J). The experiment results show that the dynamic choice scheme of the external gird points can eliminate the boundary effect effectively and the efficiency can also be improved greatly comparing with the classical interval wavelets numerical methods.


Subject(s)
Algorithms , Models, Theoretical
7.
ScientificWorldJournal ; 2014: 390148, 2014.
Article in English | MEDLINE | ID: mdl-24723805

ABSTRACT

Combining the variational iteration method (VIM) with the sparse grid theory, a dynamic sparse grid approach for nonlinear PDEs is proposed in this paper. In this method, a multilevel interpolation operator is constructed based on the sparse grids theory firstly. The operator is based on the linear combination of the basic functions and independent of them. Second, by means of the precise integration method (PIM), the VIM is developed to solve the nonlinear system of ODEs which is obtained from the discretization of the PDEs. In addition, a dynamic choice scheme on both of the inner and external grid points is proposed. It is different from the traditional interval wavelet collocation method in which the choice of both of the inner and external grid points is dynamic. The numerical experiments show that our method is better than the traditional wavelet collocation method, especially in solving the PDEs with the Nuemann boundary conditions.


Subject(s)
Algorithms , Models, Statistical , Numerical Analysis, Computer-Assisted , Analysis of Variance , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...