Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202409281, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837579

ABSTRACT

Balancing electrochemical activity and structural reversibility of fibrous electrodes with accelerated Faradaic charge transfer kinetics and pseudocapacitive storage are highly crucial for fiber-shaped supercapacitors (FSCs). Herein, we report novel core-shell hierarchical fibers for high-performance FSCs, in which the ordered NiCoMoS nanosheets arrays are chemically anchored on Ti3C2Tx fiber. Beneficial from architecting stable polymetallic sulfide arrays and conductive networks, the NiCoMoS-Ti3C2Tx fiber maintains fast charge transfer, low diffusion and OH- adsorption barrier, and stabilized multi-electronic reaction kinetics of polymetallic sulfide. Consequently, the NiCoMoS-Ti3C2Tx fiber exhibits a large volumetric capacitance (2472.3 F cm-3) and reversible cycling performance (20,000 cycles). In addition, the solid-state symmetric FSCs deliver a high energy density of 50.6 mWh cm-3 and bending stability, which can significantly power electronic devices and offer sensitive detection for dopamine.

2.
Microorganisms ; 10(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336217

ABSTRACT

As commonly used chemical plasticizers in plastic products, phthalate esters have become a serious ubiquitous environmental pollutant, such as in soil of plastic film mulch culture. Microbial degradation or transformation was regarded as a suitable strategy to solve the phthalate esters pollution. Thus, a new phthalate esters degrading strain Gordonia sp. GZ-YC7 was isolated in this study, which exhibited the highest di-(2-ethylhexyl) phthalate degradation efficiency under 1000 mg/L and the strongest tolerance to 4000 mg/L. The comparative genomic analysis results showed that there exist diverse esterases for various phthalate esters such as di-(2-ethylhexyl) phthalate and dibutyl phthalate in Gordonia sp. GZ-YC7. This genome characteristic possibly contributes to its broad substrate spectrum, high degrading efficiency, and high tolerance to phthalate esters. Gordonia sp. GZ-YC7 has potential for the bioremediation of phthalate esters in polluted soil environments.

3.
Appl Microbiol Biotechnol ; 106(3): 889-904, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35072735

ABSTRACT

Nicotine is a harmful pollutant mainly from the waste of tobacco factories. It is necessary to remove nicotine via high efficient strategies such as bioremediation. So far, an increasing number of nicotine degrading strains have been isolated. However, their degrading efficiency and tolerance to high content nicotine is still not high enough for application in real environment. Thus, the modification of nicotine metabolism pathway is obligated and requires comprehensive molecular insights into whole cell metabolism of nicotine degrading strains. Obviously, the development of multi-omics technology has accelerated the mechanism study on microbial degradation of nicotine and supplied more novel strategy of strains modification. So far, three pathways of nicotine degradation, pyridine pathway, pyrrolidine pathway, and the variant of pyridine and pyrrolidine pathway (VPP pathway), have been clearly identified in bacteria. Muti-omics analysis further revealed specific genome architecture, regulation mechanism, and specific genes or enzymes of three pathways, in different strains. Especially, muti-omics analysis revealed that functional modules coexisted in different genome loci and played additional roles on enhanced degradation efficiency in bacteria. Based on the above discovery, genomic editing strategy becomes more feasible to greatly improve bacterial degrading efficiency of nicotine.


Subject(s)
Metabolic Networks and Pathways , Nicotine , Bacteria/genetics , Biodegradation, Environmental , Metabolic Networks and Pathways/genetics , Nicotiana
4.
Appl Biochem Biotechnol ; 193(9): 2793-2805, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34061306

ABSTRACT

Nicotine-degrading Pseudomonas sp. JY-Q is a preferred strain utilized in reconstituted tobacco process for tobacco waste treatment. However, its efficiency of nicotine metabolism still requires to be improved via genomic technology such as promoter engineering based on genomic information. Concerning upstream module of nicotine metabolic pathway, we found that two homologous genes of nicotine dehydrogenase (nicA2 and nox) coexisted in strain JY-Q. However, the transcriptional amount of nox was 20-fold higher than that of nicA2. Thus, the nicA2 expression required improvement. Combinatorial displacement was accomplished for two predicted endogenous promoters, named as PnicA2 and Pnox for nicA2 and nox, respectively. The mutant with Pnox as the promoters for both nicA2 and nox exhibited the best nicotine metabolic capacity which increased by 66% compared to the wild type. These results suggested that endogenous promoter replacement is also feasible for function improvement of metabolic modules and strain enhancement of biodegradation capacity to meet real environment demand.


Subject(s)
Microorganisms, Genetically-Modified , Nicotiana/chemistry , Nicotine , Promoter Regions, Genetic , Pseudomonas , Biodegradation, Environmental , Metabolic Networks and Pathways , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Nicotine/chemistry , Nicotine/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Solid Waste
5.
Chemistry ; 27(18): 5761-5768, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33469957

ABSTRACT

Nanoscale composites for high-performance electrodes employed in flexible, all-solid-state supercapacitors are being developed. A series of binder-free composites, each consisting of a transition bimetal oxide, a metal oxide, and a metal nitride grown on N-doped reduced graphene oxide (rGO)-wrapped nickel foam are obtained by using a universal strategy. Three different transition metals, Co, Mo, and Fe, are separately compounded with nickel ions, which originate from the nickel foam, to form three composites, NiCoO2 @Co3 O4 @Co2 N, NiMoO4 @MoO3 @Mo2 N, and NiFe2 O4 @Fe3 O4 @Fe2 N, respectively. These as-prepared active materials have similar regular variation patterns in their properties, including better conductivity and battery-mimicking pseudocapacitance, which result in their high whole-electrode capacitance performance [2598.3 F g-1 (39.85 F cm-2 ), 3472.6 F g-1 (41.43 F cm-2 ) and 1907.5 F g-1 (3.41 F cm-2 ) for the composites incorporating Co, Mo, and Fe, respectively]. The as-assembled flexible, all-solid-state NiCoO2 @Co3 O4 @Co2 N//KOH/PVA//NiCoO2 @Co3 O4 @Co2 N device can be easily bent and exhibits high energy density and power density of 92.8 Wh kg-1 and 1670.4 W kg-1 , respectively. The universality of this design strategy could allow it to be employed in producing hybrid materials for high-performance energy-storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...