Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Physiol Pharmacol ; 90(7): 873-80, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22693949

ABSTRACT

We have shown recently that sasanquasaponin (SQS) can inhibit ischemia/reperfusion-induced elevation of intracellular Cl(-) concentration ([Cl(-)](i)) and elicit cardioprotection by up-regulating anion exchanger 3 (AE(3)) expression. In the present study, we futher analysed the intracellular signal transduction pathways by which SQS up-regulates AE(3) expression and elicits cardioprotection. Cardiomyocytes were incubated for 24 h with or without 10 µmol/L SQS, followed by simulated ischemia/reperfusion (sI/R). NO formation, Ras activity, and extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation were measured appropriately. We showed that SQS pretreatment efficiently attenuated viability loss and lactate dehydrogenase leakage induced by sI/R in cardiomyocytes. Moreover, SQS induced NO production and promoted Ras activation, which futher promoted extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation. These effects were paralleled by an increase in AE(3) expression. However, when the cardiomyocytes were treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (c-PTIO; an NO scavenger), S-trans-trans-farnesylthiosalicylic acid (FTS) (a Ras inhibitor), U0126 (an ERK1/2 inhibitor), respectively, the increase in AE(3) expression occurring during SQS pretreatment was almost completely abolished and, as a result, SQS-induced cardioprotection was prevented. Our findings indicate that SQS might up-regulate AE(3) expression through NO/Ras/ERK1/2 signal pathway to elicit cardioprotection in cultured cardiomyocytes.


Subject(s)
Antiporters/metabolism , Cardiotonic Agents/pharmacology , MAP Kinase Signaling System/drug effects , Nitric Oxide/metabolism , Saponins/pharmacology , ras Proteins/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , L-Lactate Dehydrogenase/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
2.
J Cell Biochem ; 112(10): 2803-12, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21608017

ABSTRACT

Recent studies have shown that the cardioprotection of sasanquasaponin (SQS) against ischemia/reperfusion injury is related to inhibiting ischemia/reperfusion-induced elevation of intracellular Cl(-) concentration ([Cl(-) ](i)). However, the mechanism of inhibition remains unclear. Anion exchanger 3 (AE(3)) is an important regulatory protein for [Cl(-)](i). This study investigated whether AE(3) plays the critical role in the inhibitory effect of SQS on elevation of [Cl(-)](i) induced by ischemia/reperfusion and mediates the cardioprotection of SQS in H9c2 cells. Normal and AE(3) -knockdown H9c2 cells were incubated for 24 h with or without various concentrations of SQS (0.1, 1, or 10 µM) followed by simulated ischemia/reperfusion (sI/R). AE(3) expression was detected by Western blot. Flow cytometer analysis was employed to determine [Cl(-)](i,) [Ca(2+)](i) , reactive oxygen species (ROS) production, and cell apoptosis. The results showed that SQS pretreatment concentration-dependently attenuated sI/R-induced viability loss and lactate dehydrogenase leakage in normal H9c2 cells. Additionally, SQS concentration-dependently up-regulated AE(3) protein expression, and inhibited sI/R-induced the elevation of [Cl(-)](i) followed by the attenuation of Ca(2+) overload, ROS production, and cell apoptosis. However, the dose-dependent cardioprotection induced by SQS was abolished in AE(3) -knockdown H9c2 cells, and the inhibitory effects of SQS on [Cl(-)](i), Ca(2+) overload, ROS production, and cell apoptosis were also reversed. Our data indicate that AE(3) mediates the cardioprotective effect of SQS against sI/R injury. Importantly, AE(3) is required for SQS to inhibit sI/R-induced elevation of [Cl(-)](i), which subsequently inhibited sI/R-induced Ca(2+) overload, ROS production, and cell apoptosis.


Subject(s)
Antiporters/metabolism , Chlorides/metabolism , Myocardial Reperfusion Injury/physiopathology , Saponins/pharmacology , Antiporters/genetics , Apoptosis/drug effects , Blotting, Western , Calcium/metabolism , Cell Survival/drug effects , Flow Cytometry , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...