Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5900, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003261

ABSTRACT

On-site conversion of organic waste into biogas to satisfy consumer energy demand has the potential to realize energy equality and mitigate climate change reliably. However, existing methods ignore either real-time full supply or methane escape when supply and demand are mismatched. Here, we show an improved design of community biogas production and distribution system to overcome these and achieve full co-benefits in developing economies. We take five existing systems as empirical examples. Mechanisms of synergistic adjusting out-of-step biogas flow rates on both the plant-side and user-side are defined to obtain consumption-to-production ratios of close to 1, such that biogas demand of rural inhabitants can be met. Furthermore, carbon mitigation and its viability under universal prevailing climates are illustrated. Coupled with manure management optimization, Chinese national deployment of the proposed system would contribute a 3.77% reduction towards meeting its global 1.5 °C target. Additionally, fulfilling others' energy demands has considerable decarbonization potential.

2.
Bioresour Technol ; 346: 126345, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34775051

ABSTRACT

Rice straw and pig manure pellets (RPP) and sorghum straw and pig manure pellets (SPP) were used to identify their competition as the flexible feedstock of anaerobic digestion with one-year indoor storage. The results indicated the effect of time on their characteristic was tiny during storage period, such as density, calorific value, total solid, volatile solid, ratio of carbon and nitrogen, and lignocellulosic components. Biogas yields of stored RPP and SPP were 8.8% and 26.7% lower than that of fresh pig manure (PM), and 45.4% and 56.1% higher than the sum of corresponding straw and PM digestion alone, respectively. Improvements in biodegradability were observed in co-densified biomass anaerobic digestion. Net biogas yield of RPP was 24.2% higher than that of rice straw, considering volatile matter loss and biogas yield decline during densification and storage stage. Priority of manure and supplement of co-densified biomass were proposed for feedstock supply on demand.


Subject(s)
Biofuels , Manure , Agriculture , Anaerobiosis , Animals , Methane , Seasons , Swine
3.
Front Nutr ; 8: 702096, 2021.
Article in English | MEDLINE | ID: mdl-34722601

ABSTRACT

Biogas slurry, a byproduct of biogas plants, is considered a high-quality bio-organic fertilizer. Despite providing nutrients to crops, biogas slurry may contain a high concentration of heavy metals, leading to food safety problems and endangering human health if such metals are absorbed by plants. Therefore, biogas slurry should undergo systematic risk assessment prior to direct use on farmland to ensure its safety for soils and crops. In this study, the risk of applying biogas slurry in peanut cultivation was comprehensively evaluated. Based on nitrogen contents, different concentrations of biogas slurry were applied in peanut cultivation. The results achieved herein showed that the application of biogas slurry as a nutrient supplier in peanut cultivation would significantly affect the physical and chemical properties of soil and characteristics of the plant and the quality of peanuts. Although the heavy metal content of biogas slurry was within the permitted range, it had potential risks to human health and the environment. Principal component analysis (PCA) showed that biogas slurry was the primary source of heavy metals in soil. After the application of biogas slurry, the contents of As and Hg in the soil increased significantly, which were 11.12 and 26.67 times higher than those in the control soil. The contents of Cu, Zn, Pb, Cd, and As in peanut kernel samples under different levels of biogas slurry application were all lower than the maximum permissible limit set by the Standardization Administration of China. In contrast, the content of Hg in peanut kernels was higher than the maximum permissible limit value of 0.02 mg/kg. Peanut had a higher enrichment capacity of Cd and Zn and a higher migration capacity of Pb. The health risk assessment showed that the long-term consumption of peanuts grown with a high dosage of biogas slurry would be harmful to the health of children aged 2-6 years with a large consumption level.

4.
Bioresour Technol ; 337: 125368, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34111628

ABSTRACT

Immersed liquid circulation is assumed to improve solid-state anaerobic digestion (SS-AD) with digestate flow convection on the surface of solid-state bed (SSB), which depends on SSB concentration and circulation rate (CR). In this study, the impact of CR on rice straw SS-AD was investigated within a 30 L pilot digester. Results showed that SSB threshold concentration for efficient biogas conversion was 10%-12% TS, achieving the methane yield of 185.3 mL/g VS. Within the threshold, methane production progress and VFAs release could be enhanced simultaneously by rational CR increasing, but no significant methane yield improvement was observed; above, the rapid and stable biogas generation could be acquired with a competitive methane yield of 174.7 mL/g VS (150% CR). No matter within or above the threshold, efficient lingo-cellulosic degradation was always accompanied by the moderate CR for effective methane generation. SSB was proposed to be above threshold for industrial application.


Subject(s)
Methane , Oryza , Anaerobiosis , Biofuels , Bioreactors , Fatty Acids, Volatile
5.
Microorganisms ; 8(2)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013160

ABSTRACT

Long-term anaerobic co-digestion of swine manure (SM) and corn stover (CS) was conducted using semi-continuously loaded digesters under mesophilic conditions. A preliminary test was first conducted to test the effects of loading rates, and results indicated the 3 g-VS L-1 d-1 was the optimal loading rate. Based on the preliminary results, a verification replicated test was conducted with 3 g-VS L-1 d-1 loading rate and different SM/CS ratios (1:1, 2:1 and 1:2). Results showed that a SM/CS ratio of 2/1 was optimal, based on maximum observed methane-VSdes generation and carbon conversion efficiency (72.56 ± 3.40 mL g-1 and 40.59%, respectively). Amplicon sequencing analysis suggested that microbial diversity was increased with CS loading. Amino-acid-degrading bacteria were abundant in the treatment groups. Archaea Methanoculleus could enhance biogas and methane productions.

6.
Bioresour Technol ; 292: 122058, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31488335

ABSTRACT

Anaerobic digestion (AD) and pyrolysis are two promising technologies used worldwide for waste biomass treatment. Interests on intensification techniques of AD has been increasing to obtain sufficient and sustainable methane production with stable digester performance. For instance, considerable attention has been devoted to the coupling of AD with biochar, which is produced by biomass thermochemical conversion. This manuscript presents a comprehensive review about recent achievements in enhancing AD efficiency with the utilization of biochar. The key roles of biochar include enhancing and equilibrating hydrolysis, acidogenesis-acetogenesis, and methanogenesis, as well as alleviating inhibitor stress were summarized. Biochar can promote biomethane process mainly by serving as a provision for bioelectrical connections between fermentative bacteria and methanogens, a support for microbial colonies, and a reinforcer for buffer capacity. Through an overview of the early applications, this paper aims to pinpoint the potential mechanism and future explorative directions of biochar enhancing AD performance.


Subject(s)
Charcoal , Methane , Anaerobiosis , Biomass , Hydrolysis
7.
Bioresour Technol ; 290: 121660, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31326651

ABSTRACT

Biological pretreatment can increase the methane production of anaerobic digestion. In this study, stover was pretreated via microbial consortium prior to anaerobic digestion; through 16S rRNA gene and 16S rRNA amplicon sequencing and metatranscriptomic analysis, and the effects of the pretreatment on the microbial community and critical factors of the increased methane production were studied. Microbial community structure was less affected by the pretreatment, which ensures the stable performance of anaerobic digestion. The methane production increased by 62.85% at the peak phase compared to the untreated stover. The activity of Methanosaeta increased from 2.0% to 10.1%, significantly enhancing the ability of the community to capture acetic acid and reduce CO2 to methane. The main contribution to the increase in methane production was a unique acetyl-CoA synthetase, which showed significant up-regulation (121.8%). This research demonstrated the importance of Methanosaeta and its unique metabolic pathways in anaerobic digestion utilizing a biological pretreatment.


Subject(s)
Methane , Microbiota , Anaerobiosis , Bioreactors , Microbial Consortia , RNA, Ribosomal, 16S
8.
Bioresour Technol ; 282: 275-284, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30875595

ABSTRACT

Low digestibility of lignocellulosic feedstock is the most important limitation for biogas production. The synergistic effects of ozone and aqueous ammonia (OSAA) on different types of lignocelluloses including rice straw and dairy manure fiber were investigated. OSAA significantly increased biogas production of rice straw by 114.2%-172.8% when compared with using ozonation alone, while increased by 6.2%-8.8% with manure fiber. OSAA pretreatment increased biogas production of manure fiber by 55.3%-103.6% when compared with soaking aqueous ammonia (SAA) alone, while by 28.8%-39.9% with rice straw. The specific effects of pretreatment time on anaerobic digestion of manure fiber differed noticeably from those on rice straw. Ozonation time had a major function for pretreatment of manure fiber via the OSAA process, but SAA pretreatment time was more important than that for rice straw.


Subject(s)
Ammonia/pharmacology , Manure , Methane/biosynthesis , Oryza/metabolism , Ozone/pharmacology , Biofuels , Dietary Fiber/metabolism , Lignin/metabolism
9.
Bioresour Technol ; 249: 117-124, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29040844

ABSTRACT

Hydrothermally-pretreated rice straw (HPRS) from various pretreatment temperatures was anaerobically-digested in whole slurry. Results indicated promoting pretreatment temperature significantly deconstructed rice straw, and facilitated the conversion of insoluble fractions to soluble fractions. Although 306.6 mL/g TS biogas was maximally yielded in HPRS-90 and HPRS-180, respectively, via digestion in whole slurry, it was only 3% promotion compared to the unpretreated rice straw. HPRS-210 yielded 208.5 mL/g TS biogas, which was 30% reduction with longer lag period of 19.8 d, suggesting serious inhibitions happened. Through slightly increasing organic loading, more serious acidification and reduction on biogas yield, especially at higher pretreatment temperatures, indicated the soluble fractions controlled digestion performances. Pearson correlation analysis suggested negative relationship existed between methane yield and the soluble fractions including soluble carbohydrates, formic acid and furfural. Hydrothermal pretreatment, especially at higher temperature, did not improve anaerobic digestion, thereby, was not recommended, however, lower temperature can be considered potentially.


Subject(s)
Biofuels , Anaerobiosis , Biomass , Lignin , Methane
10.
Bioresour Technol ; 245(Pt A): 90-97, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28892710

ABSTRACT

In order to elucidate the instability mechanism, screen early warning indicators, and propose control measures, the mesophilic digestion of vegetable waste (VW) was carried out at organic loading rates (OLR) of 0.5, 1.0, and 1.5g volatile solid (VS)/(Ld). The process parameters, including biogas components, volatile fatty acids (VFA), ammonia, pH, total alkalinity (TA), bicarbonate alkalinity (BA), and intermediate alkalinity (IA), were monitored every day. Digestion was inhibited at OLR of 1.5gVS/(Ld). The primary causes of instability are a high sugar and negligible ammonia content, in addition to the feed without effluent recirculation, which led to BA loss. The ratios of CH4/CO2, VFA/BA, propionate, n-butyrate and iso-valerate were selected as early warning indicators. In order to maintain the digestion of VW at a high OLR, control measures including effluent recirculation and trace element addition are recommended.


Subject(s)
Biofuels , Bioreactors , Vegetables , Anaerobiosis , Fatty Acids, Volatile , Methane
11.
Appl Biochem Biotechnol ; 183(3): 906-922, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28417424

ABSTRACT

Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.


Subject(s)
Biotechnology/methods , Fruit/chemistry , Vegetables/chemistry , Waste Products , Anaerobiosis , Bioreactors/microbiology
12.
Appl Biochem Biotechnol ; 179(5): 846-62, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26940572

ABSTRACT

To investigate the effects of organic loading rate (OLR) on performance and stability of mesophilic co-digestion of rice straw (RS) and chicken manure (CM), benchtop experiments (40 L) were carried out at OLRs of 3.0, 3.6, 4.2, 4.8, 6.0, 8.0, and 12.0 kg volatile solid (VS)/(m(3)·day) with volatile solid (VS) ratio of 1:1 (RS/CM) which was based on batch tests. Anaerobic co-digestion was slightly and severely inhibited by the accumulation of ammonia when the digester was overloaded at an OLR of 6 and 12 kg VS/(m(3)·day), respectively. The recommended OLR for co-digestion is 4.8 kg VS/(m(3)·day), which corresponds to average specific biogas production (SBP) of 380 L/kg VS and volumetric biogas production rate (VBPR) of 1.8 m(3)/(m(3)·day). An OLR of 6-8 kg VS/(m(3)·d) with SBP of 360-440 L/kg VS and VBPR of 2.1-3.5 m(3)/(m(3)·day) could be considered, if an Anaerobic digestion (AD) system assisted by in situ removal of ammonia was adopted.


Subject(s)
Ammonia/chemistry , Biofuels , Manure/analysis , Oryza/chemistry , Anaerobiosis , Animals , Chickens , Methane/chemistry
13.
Bioresour Technol ; 199: 245-257, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26264398

ABSTRACT

Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw.


Subject(s)
Hydrogen Peroxide/pharmacology , Phosphoric Acids/pharmacology , Triticum/chemistry , Waste Products , Cellulose/metabolism , Glucose/metabolism , Hydrolysis , Lignin/metabolism , Polysaccharides/metabolism , Temperature , Time Factors , Triticum/drug effects
14.
Bioresour Technol ; 202: 25-32, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26700755

ABSTRACT

Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment.


Subject(s)
Biotechnology/methods , Temperature , Waste Products , Water/chemistry , Zea mays/chemistry , Hydrolysis , Lignin/metabolism , Methane/biosynthesis , Time Factors
15.
Bioresour Technol ; 193: 62-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117236

ABSTRACT

This paper presents mass flow and energy balance as well as an economic analysis for a biogas plant in a rice-wine-pig system at a practical rather than laboratory scale. Results showed feeding amount was 65.30 t d(-1) (total solid matter (TSM) 1.3%) for the normal temperature continuous stirred tank reactor (CSTR), and 16.20 t d(-1) (TSM 8.4%) for the mesophilic CSTR. The digestion produced 80.50 t d(-1) of mass, with 76.41 t d(-1) flowing into rice fields and 4.49 t d(-1) into composting. Energy consumption of this plant fluctuated with seasons, and surplus energy was 823, 221 kWh/year. Thus, biogas plant was critical for material recycling and energy transformation of this agro-ecosystem. The economic analysis showed that the payback time of the plant was 10.9 years. It also revealed application of biogas as a conventional energy replacement would be attractive for a crop-wine-livestock ecosystem with anaerobic digestion of manure.


Subject(s)
Biofuels/analysis , Crops, Agricultural/anatomy & histology , Livestock/anatomy & histology , Manure/analysis , Oryza/chemistry , Wine/analysis , Anaerobiosis/physiology , Animals , Bioreactors , Ecosystem , Energy Metabolism/physiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...