Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Exp Bot ; 71(16): 4930-4943, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32361766

ABSTRACT

Most cellular sucrose is present in the cytosol and vacuoles of plant cells; however, little is known about the effect of this sucrose compartmentation on plant properties. Here, we examined the effects of altered intracellular sucrose compartmentation in Arabidopsis thaliana leaves by heterologously expressing the sugar beet (Beta vulgaris) vacuolar sucrose loader BvTST2.1 and by generating lines with reduced vacuolar invertase activity (amiR vi1-2). Heterologous expression of BvTST2.1 led to increased monosaccharide levels in leaves, whereas sucrose levels remained constant, indicating that vacuolar invertase activity in mesophyll vacuoles exceeds sucrose uptake. This notion was supported by analysis of tobacco (Nicotiana benthamiana) leaves transiently expressing BvTST2.1 and the invertase inhibitor NbVIF. However, sucrose levels were strongly elevated in leaf extracts from amiR vi1-2 lines, and experiments confirmed that sucrose accumulated in the corresponding vacuoles. The amiR vi1-2 lines exhibited impaired early development and reduced seed weight. When germinated in the dark, amiR vi1-2 seedlings were less able to convert sucrose into monosaccharides than the wild type. Cold temperatures strongly down-regulated both VI genes, but the amiR vi1-2 lines showed normal frost tolerance. These observations indicate that increased vacuolar sucrose levels fully compensate for the effects of low monosaccharide concentrations on frost tolerance.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Homeostasis , Plant Development , Seeds/metabolism , Sucrose , Vacuoles/metabolism , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
2.
Nat Plants ; 1: 14001, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-27246048

ABSTRACT

Sugar beet provides around one third of the sugar consumed worldwide and serves as a significant source of bioenergy in the form of ethanol. Sucrose accounts for up to 18% of plant fresh weight in sugar beet. Most of the sucrose is concentrated in the taproot, where it accumulates in the vacuoles. Despite 30 years of intensive research, the transporter that facilitates taproot sucrose accumulation has escaped identification. Here, we combine proteomic analyses of the taproot vacuolar membrane, the tonoplast, with electrophysiological analyses to show that the transporter BvTST2.1 is responsible for vacuolar sucrose uptake in sugar beet taproots. We show that BvTST2.1 is a sucrose-specific transporter, and present evidence to suggest that it operates as a proton antiporter, coupling the import of sucrose into the vacuole to the export of protons. BvTST2.1 exhibits a high amino acid sequence similarity to members of the tonoplast monosaccharide transporter family in Arabidopsis, prompting us to rename this group of proteins 'tonoplast sugar transporters'. The identification of BvTST2.1 could help to increase sugar yields from sugar beet and other sugar-storing plants in future breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...