Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 187: 38-49, 2022 07.
Article in English | MEDLINE | ID: mdl-35605898

ABSTRACT

Integrin-mediated cell contacts with the extracellular matrix (ECM) are essential for cellular adhesion, force transmission, and migration. Several effectors, such as divalent cations and redox-active compounds, regulate ligand binding activities of integrins and influence their cellular functions. To study the role of the Ca2+ binding site within the hinge region of the integrin α7 subunit, we genetically abrogated it in the α7hiΔCa mutant. This mutant folded correctly, associated with the ß1 subunit and was exposed on the cell surface, but showed reduced ligand binding and weaker cell adhesion to laminin-111. Thus, it resembles the α7hiΔSS mutant, in which the redox-regulated pair of cysteines, closeby to the Ca2+ binding site within the hinge, was abrogated. Comparing both mutants in adhesion strength and cell migration revealed that both Ca2+ complexation and redox-regulation within the hinge interdepend on each other. Moreover, protein-chemical analyses of soluble integrin ectodomains containing the same α7 hinge mutations suggest that integrin activation via the subunit α hinge is primed by the formation of the cysteine pair-based crosslinkage. Then, this allows Ca2+ complexation within the hinge, which is another essential step for integrin activation and ligand binding. Thus, the α hinge is an allosteric integrin regulation site, in which both effectors, Ca2+ and redox-active compounds, synergistically and hierarchically induce far-ranging conformational changes, such as the extension of the integrin ectodomain, resulting in integrin activation of ECM ligand binding and altered integrin-mediated cell functions.


Subject(s)
Integrins , Sulfhydryl Compounds , Binding Sites/genetics , Cell Adhesion , Integrins/genetics , Ligands , Oxidation-Reduction
2.
Allergy ; 77(1): 72-82, 2022 01.
Article in English | MEDLINE | ID: mdl-33887070

ABSTRACT

The ongoing COVID-19 pandemic caused by the SARS-CoV-2 coronavirus has affected the health of tens of millions of people worldwide. In particular, in elderly and frail individuals the infection can lead to severe disease and even fatal outcomes. Although the pandemic is primarily a human health crisis its consequences are much broader with a tremendous impact on global economics and social systems. Vaccines are considered the most powerful measure to fight the pandemic and protect people from COVID-19. Based on the concerted activities of scientists, manufacturers and regulators, the urgent need for effective countermeasures has provoked the development and licensure of novel COVID-19 vaccines in an unprecedentedly fast and flexible manner within <1 year. To ensure the safety and efficacy of these novel vaccines during the clinical development and the routine use in post-licensure vaccination campaigns existing regulatory requirements and procedures had to be wisely and carefully adapted to allow for an expedited evaluation without compromising the thoroughness of the regulatory and scientific assessment. In this review, we describe the regulatory procedures, concepts and requirements applied to guide and promote the highly accelerated development and licensure of safe and efficacious COVID-19 vaccines in Europe.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Europe , Humans , Pandemics , SARS-CoV-2
3.
Free Radic Biol Med ; 164: 341-353, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33465466

ABSTRACT

Proteomics studies have revealed that adhesomes are assembled from a plethora of proteins at integrin-mediated cellular contact sites with the extracellular matrix. By combining dimedone-trapping of sulfenylated proteins with the purification of the adhesome complex, we extended previous proteomics approaches on adhesomes to a redox proteomic analysis. This added a new aspect of adhesome complexity as individual adhesome proteins change their redox state in response to environmental signals. As model system, rat pheochromocytoma PC12 cells were studied in contact with type IV collagen and in response to nerve growth factor (NGF). NGF stimulates the endogenous production of reactive oxygen species (ROS) and the formation of neurite-like cell protrusions, which are anchored to the substratum via adhesomes. Dimedone detects the reversible oxidation of cysteine thiol groups into sulfenic acid groups which was used in proteomic analysis of adhesome proteins revealing that sulfenylation and location of proteins mutually influence each other. For some proteins, identified by the redox proteomics approach, among them Nck-associated protein-1 (Nap-1), proximity ligation analysis and co-immunoprecipitation assays proved that protein sulfenylation sites colocalize with adhesomes of protrusions. In conclusion, the suprastructural composition and function of adhesomes is redox-regulated by ROS. Of interest in this respect, isoform-selective pharmacological inhibition of NADPH-oxidases (Noxs) reduced the adhesomal location of the collagen-binding α1ß1 integrin and the length of the outgrowing neurites, indicative of a role of Nox isoforms in the redox-regulation of adhesomes. Thus, our novel redox proteomics approach not only revealed redox-modifications and the potential redox-regulation of adhesomes and their constituents but it may also provide a tool to analyze the ROS-stimulated neurite repair of peripheral neurons.


Subject(s)
Nerve Growth Factor , Proteomics , Animals , Nerve Growth Factor/metabolism , Neurites/metabolism , Oxidation-Reduction , PC12 Cells , Rats
4.
Antioxidants (Basel) ; 9(3)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164274

ABSTRACT

While adhering to extracellular matrix (ECM) proteins, such as laminin-111, cells temporarily produce hydrogen peroxide at adhesion sites. To study the redox regulation of α7ß1 integrin-mediated cell adhesion to laminin-111, a conserved cysteine pair within the α-subunit hinge region was replaced for alanines. The molecular and cellular effects were analyzed by electron and atomic force microscopy, impedance-based migration assays, flow cytometry and live cell imaging. This cysteine pair constitutes a thiol-switch, which redox-dependently governs the equilibrium between an extended and a bent integrin conformation with high and low ligand binding activity, respectively. Hydrogen peroxide oxidizes the cysteines to a disulfide bond, increases ligand binding and promotes cell migration toward laminin-111. Inversely, extracellular thioredoxin-1 reduces the disulfide, thereby decreasing laminin binding. Mutation of this cysteine pair into the non-oxidizable hinge-mutant shows molecular and cellular effects similar to the reduced wild-type integrin, but lacks redox regulation. This proves the existence of a dominant thiol-switch within the α subunit hinge of α7ß1 integrin, which is sufficient to implement activity regulation by extracellular redox agents in a redox-regulatory circuit. Our data reveal a novel and physiologically relevant thiol-based regulatory mechanism of integrin-mediated cell-ECM interactions, which employs short-lived hydrogen peroxide and extracellular thioredoxin-1 as signaling mediators.

5.
Mol Aspects Med ; 63: 30-46, 2018 10.
Article in English | MEDLINE | ID: mdl-29596842

ABSTRACT

Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.


Subject(s)
Cell Communication , Extracellular Matrix/metabolism , Fibrosis/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Adhesion Molecules/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Space/metabolism , Fibrosis/etiology , Humans , Myofibroblasts/metabolism , Oxidation-Reduction
6.
Acta Neuropathol ; 129(4): 565-83, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25666182

ABSTRACT

The brains of Alzheimer's disease (AD) patients are characterized by deposits of Abeta peptides and by accompanying chronic inflammation. Here, we provide evidence that the enzyme isoglutaminyl cyclase (isoQC) is a novel factor contributing to both aspects of AD pathology. Two putative substrates of isoQC, N-truncated Abeta peptides and the monocyte chemoattractant chemokine CCL2, undergo isoQC-catalyzed pyroglutamate (pGlu) modification. This triggers Abeta aggregation and facilitates the biological activity of CCL2, which collectively results in the formation of high molecular weight Abeta aggregates, glial cell activation, neuroinflammation and neuronal cell death. In mouse brain, we found isoQC to be neuron-specifically expressed in neocortical, hippocampal and subcortical structures, localized to the endoplasmic reticulum and Golgi apparatus as well as co-expressed with its substrate CCL2. In aged APP transgenic Tg2576 mice, both isoQC and CCL2 mRNA levels are up-regulated and isoQC and CCL2 proteins were found to be co-induced in Abeta plaque-associated reactive astrocytes. Also, in mouse primary astrocyte culture, a simultaneous up-regulation of isoQC and CCL2 expression was revealed upon Abeta and pGlu-Abeta stimulation. In brains of AD patients, the expression of isoQC and CCL2 mRNA and protein is up-regulated compared to controls and correlates with pGlu-Abeta load and with the decline in mini-mental state examination. Our observations provide evidence for a dual involvement of isoQC in AD pathogenesis by catalysis of pGlu-Abeta and pGlu-CCL2 formation which mutually stimulate inflammatory events and affect cognition. We conclude that isoQC inhibition may target both major pathological events in the development of AD.


Subject(s)
Alzheimer Disease/pathology , Aminoacyltransferases/metabolism , Brain/metabolism , Chemokine CCL2/metabolism , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Aminoacyltransferases/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain/pathology , Cells, Cultured , Chemokine CCL2/genetics , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/metabolism , Time Factors , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...