Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Gut Microbes ; 16(1): 2323233, 2024.
Article in English | MEDLINE | ID: mdl-38465624

ABSTRACT

Bile acid transformation is a common gut microbiome activity that produces secondary bile acids, some of which are important for human health. One such process, 7α-dehydroxylation, converts the primary bile acids, cholic acid and chenodeoxycholic acid, to deoxycholic acid and lithocholic acid, respectively. This transformation requires a number of enzymes, generally encoded in a bile acid-inducible (bai) operon and consists of multiple steps. Some 7α-dehydroxylating bacteria also harbor additional genes that encode enzymes with potential roles in this pathway, but little is known about their functions. Here, we purified 11 enzymes originating either from the bai operon or encoded at other locations in the genome of Clostridium scindens strain ATCC 35704. Enzyme activity was probed in vitro under anoxic conditions to characterize the biochemical pathway of chenodeoxycholic acid 7α-dehydroxylation. We found that more than one combination of enzymes can support the process and that a set of five enzymes, including BaiJ that is encoded outside the bai operon, is sufficient to achieve the transformation. We found that BaiJ, an oxidoreductase, exhibits an activity that is not harbored by the homologous enzyme from another C. scindens strain. Furthermore, ligation of bile acids to coenzyme A (CoA) was shown to impact the product of the transformation. These results point to differences in the 7α-dehydroxylation pathway among microorganisms and the crucial role of CoA ligation in the process.


Subject(s)
Chenodeoxycholic Acid , Gastrointestinal Microbiome , Humans , Chenodeoxycholic Acid/metabolism , Bile Acids and Salts/metabolism , Clostridiales/metabolism , Clostridium/metabolism
2.
Environ Sci Technol ; 57(19): 7537-7546, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37133831

ABSTRACT

The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.


Subject(s)
Cytochromes , Shewanella , Oxidation-Reduction , Electron Transport , Shewanella/chemistry
3.
ISME J ; 16(7): 1740-1749, 2022 07.
Article in English | MEDLINE | ID: mdl-35338334

ABSTRACT

Soil microbiomes harbour unparalleled functional and phylogenetic diversity. However, extracting isolates with a targeted function from complex microbiomes is not straightforward, particularly if the associated phenotype does not lend itself to high-throughput screening. Here, we tackle the methylation of arsenic (As) in anoxic soils. As methylation was proposed to be catalysed by sulfate-reducing bacteria. However, to date, there are no available anaerobic isolates capable of As methylation, whether sulfate-reducing or otherwise. The isolation of such a microorganism has been thwarted by the fact that the anaerobic bacteria harbouring a functional arsenite S-adenosylmethionine methyltransferase (ArsM) tested to date did not methylate As in pure culture. Additionally, fortuitous As methylation can result from the release of non-specific methyltransferases upon lysis. Thus, we combined metagenomics, metatranscriptomics, and metaproteomics to identify the microorganisms actively methylating As in anoxic soil-derived microbial cultures. Based on the metagenome-assembled genomes of microorganisms expressing ArsM, we isolated Paraclostridium sp. strain EML, which was confirmed to actively methylate As anaerobically. This work is an example of the application of meta-omics to the isolation of elusive microorganisms.


Subject(s)
Arsenic , Anaerobiosis , Bacteria, Anaerobic/genetics , Phylogeny , Soil , Sulfates
4.
Environ Sci Technol ; 55(8): 4753-4761, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33705103

ABSTRACT

Metal-reducing microorganisms such as Shewanella oneidensis MR-1 reduce highly soluble species of hexavalent uranyl (U(VI)) to less mobile tetravalent uranium (U(IV)) compounds. The biologically mediated immobilization of U(VI) is being considered for the remediation of U contamination. However, the mechanistic underpinnings of biological U(VI) reduction remain unresolved. It has become clear that a first electron transfer occurs to form pentavalent (U(V)) intermediates, but it has not been definitively established whether a second one-electron transfer can occur or if disproportionation of U(V) is required. Here, we utilize the unusual properties of dpaea2- ((dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine)), a ligand forming a stable soluble aqueous complex with U(V), and investigate the reduction of U(VI)-dpaea and U(V)-dpaea by S. oneidensis MR-1. We establish U speciation through time by separating U(VI) from U(IV) by ion exchange chromatography and characterize the reaction end-products using U M4-edge high resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy. We document the reduction of solid phase U(VI)-dpaea to aqueous U(V)-dpaea but, most importantly, demonstrate that of U(V)-dpaea to U(IV). This work establishes the potential for biological reduction of U(V) bound to a stabilizing ligand. Thus, further work is warranted to investigate the possible persistence of U(V)-organic complexes followed by their bioreduction in environmental systems.


Subject(s)
Shewanella , Uranium , Biodegradation, Environmental , Ligands , Oxidation-Reduction
5.
Environ Sci Technol ; 54(22): 14343-14351, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33125231

ABSTRACT

Microbially-mediated methylation of arsenic (As) plays an important role in the As biogeochemical cycle, particularly in rice paddy soils where methylated As, generated microbially, is translocated into rice grains. The presence of the arsenite (As(III)) methyltransferase gene (arsM) in soil microbes has been used as an indication of their capacity for As methylation. Here, we evaluate the ability of seven microorganisms encoding active ArsM enzymes to methylate As. Amongst those, only the aerobic species were efficient methylators. The anaerobic microorganisms presented high resistance to As exposure, presumably through their efficient As(III) efflux, but methylated As poorly. The only exception were methanogens, for which efficient As methylation was seemingly an artifact of membrane disruption. Deletion of an efflux pump gene (acr3) in one of the anaerobes, Clostridium pasteurianum, rendered the strain sensitive to As and capable of more efficiently methylating As. Our results led to the following conclusions: (i) encoding a functional ArsM enzyme does not guarantee that a microorganism will actively drive As methylation in the presence of the metalloid and (ii) there is an inverse relationship between efficient microbial As efflux and its methylation, because the former prevents the intracellular accumulation of As.


Subject(s)
Arsenic , Soil Pollutants , Anaerobiosis , Clostridium , Methylation , Soil Microbiology
6.
Environ Microbiol ; 21(10): 3548-3563, 2019 10.
Article in English | MEDLINE | ID: mdl-31020759

ABSTRACT

Iron is essential for most living organisms. In addition, its biogeochemical cycling influences important processes in the geosphere (e.g., the mobilization or immobilization of trace elements and contaminants). The reduction of Fe(III) to Fe(II) can be catalysed microbially, particularly by metal-respiring bacteria utilizing Fe(III) as a terminal electron acceptor. Furthermore, Gram-positive fermentative iron reducers are known to reduce Fe(III) by using it as a sink for excess reducing equivalents, as a form of enhanced fermentation. Here, we use the Gram-positive fermentative bacterium Clostridium acetobutylicum as a model system due to its ability to reduce heavy metals. We investigated the reduction of soluble and solid iron during fermentation. We found that exogenous (resazurin, resorufin, anthraquinone-2,6-disulfonate) as well as endogenous (riboflavin) electron mediators enhance solid iron reduction. In addition, iron reduction buffers the pH, and elicits a shift in the carbon and electron flow to less reduced products relative to fermentation. This study underscores the role fermentative bacteria can play in iron cycling and provides insights into the metabolic profile of coupled fermentation and iron reduction with laboratory experiments and metabolic network modelling.


Subject(s)
Bacteria/metabolism , Clostridium acetobutylicum/metabolism , Iron/metabolism , Fermentation , Oxidation-Reduction
7.
Front Microbiol ; 9: 268, 2018.
Article in English | MEDLINE | ID: mdl-29515549

ABSTRACT

Shewanella oneidensis produces an extensive electron transfer network that results in metabolic flexibility. A large number of c-type cytochromes are expressed by S. oneidensis and these function as the fundamental electron transport chain proteins. Although several S. oneidensis cytochromes have been well-characterized, little is known about how their expression is regulated. In this study, we investigate the role of the ferric uptake regulator (Fur) and the sRNA RyhB in regulation. Our results demonstrate that loss of Fur leads to diminished growth and an apparent decrease in heme-containing proteins. Remarkably, deleting the Fur-repressed ryhB gene almost completely reverses these physiological changes, indicating that the phenotypes resulting from loss of Fur are (at least partially) dependent on RyhB. RNA sequencing identified a number of possible RyhB repressed genes. A large fraction of these encode c-type cytochromes, among them two of the most abundant periplasmic cytochromes CctA (also known as STC) and ScyA. We show that RyhB destabilizes the mRNA of four of its target genes, cctA, scyA, omp35, and nrfA and this requires the presence of the RNA chaperone Hfq. Iron limitation decreases the expression of the RyhB target genes cctA and scyA and this regulation relies on the presence of both Fur and RyhB. Overall, this study suggests that controlling cytochrome expression is of importance to maintain iron homeostasis and that sRNAs molecules are important players in the regulation of fundamental processes in S. oneidensis MR-1.

8.
Proc Natl Acad Sci U S A ; 111(12): 4566-71, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24616530

ABSTRACT

We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.


Subject(s)
Caulobacter crescentus/cytology , Microscopy/methods , Caulobacter crescentus/drug effects , Caulobacter crescentus/genetics , Cell Cycle , DNA Damage , DNA, Bacterial/drug effects , DNA, Bacterial/genetics , Mitomycin/pharmacology
9.
PLoS Pathog ; 10(1): e1003893, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24453979

ABSTRACT

Intracellular bacterial pathogens have developed a variety of strategies to avoid degradation by the host innate immune defense mechanisms triggered upon phagocytocis. Upon infection of mammalian host cells, the intracellular pathogen Francisella replicates exclusively in the cytosolic compartment. Hence, its ability to escape rapidly from the phagosomal compartment is critical for its pathogenicity. Here, we show for the first time that a glutamate transporter of Francisella (here designated GadC) is critical for oxidative stress defense in the phagosome, thus impairing intra-macrophage multiplication and virulence in the mouse model. The gadC mutant failed to efficiently neutralize the production of reactive oxygen species. Remarkably, virulence of the gadC mutant was partially restored in mice defective in NADPH oxidase activity. The data presented highlight links between glutamate uptake, oxidative stress defense, the tricarboxylic acid cycle and phagosomal escape. This is the first report establishing the role of an amino acid transporter in the early stage of the Francisella intracellular lifecycle.


Subject(s)
Citric Acid Cycle , Francisella tularensis/metabolism , Glutamic Acid/metabolism , Macrophages/microbiology , Phagosomes/metabolism , Tularemia/metabolism , Amino Acid Transport System X-AG/genetics , Amino Acid Transport System X-AG/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Female , Francisella tularensis/genetics , Francisella tularensis/pathogenicity , Glutamic Acid/genetics , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mutation , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Phagosomes/genetics , Phagosomes/microbiology , Phagosomes/pathology , Tularemia/genetics
10.
Cell Microbiol ; 16(3): 434-49, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24134488

ABSTRACT

In order to develop a successful infectious cycle, intracellular bacterial pathogens must be able to adapt their metabolism to optimally utilize the nutrients available in the cellular compartments and tissues where they reside. Francisella tularensis, the agent of the zoonotic disease tularaemia, is a highly infectious bacterium for a large number of animal species. This bacterium replicates in its mammalian hosts mainly in the cytosol of infected macrophages. We report here the identification of a novel amino acid transporter of the major facilitator superfamily of secondary transporters that is required for bacterial intracellular multiplication and systemic dissemination. We show that inactivation of this transporter does not affect phagosomal escape but prevents multiplication in the cytosol of all cell types tested. Remarkably, the intracellular growth defect of the mutant was fully and specifically reversed by addition of asparagine or asparagine-containing dipeptides as well as by simultaneous addition of aspartic acid and ammonium. Importantly, bacterial virulence was also restored in vivo, in the mouse model, by asparagine supplementation. This work unravels thus, for the first time, the importance of asparagine for cytosolicmultiplication of Francisella. Amino acid transporters are likely to constitute underappreciated players in bacterial intracellular parasitism.


Subject(s)
Amino Acid Transport Systems/genetics , Asparagine/metabolism , Bacterial Proteins/genetics , Francisella tularensis/growth & development , Ammonium Compounds/pharmacology , Animals , Asparagine/pharmacology , Aspartic Acid/metabolism , Aspartic Acid/pharmacology , Bacterial Proteins/pharmacokinetics , Cell Line, Tumor , Francisella tularensis/metabolism , Francisella tularensis/pathogenicity , Hep G2 Cells , Humans , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Phagosomes/microbiology , Tularemia/microbiology
11.
PLoS One ; 7(7): e41999, 2012.
Article in English | MEDLINE | ID: mdl-22848684

ABSTRACT

Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensis RNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium.


Subject(s)
Francisella tularensis/genetics , Francisella tularensis/pathogenicity , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Animals , Base Sequence , Female , Gene Expression Regulation, Bacterial/genetics , Intracellular Space/microbiology , Macrophages/cytology , Macrophages/microbiology , Mice , Molecular Sequence Data , Species Specificity
12.
Cell Microbiol ; 14(11): 1769-83, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22804921

ABSTRACT

Francisella tularensis, a Gram-negative bacterium that causes the disease tularemia in a large number of animal species, is thought to reside preferentially within macrophages in vivo. F. tularensis has developed mechanisms to rapidly escape from the phagosome into the cytoplasm of infected cells, a habitat with a rich supply of nutrients, ideal for multiplication. SLC1A5 is a neutral amino acid transporter expressed by human cells, which serves, along with SLC7A5 to equilibrate cytoplasmic amino acid pools. We herein analysed whether SLC1A5 was involved in F. tularensis intracellular multiplication. We demonstrate that expression of SLC1A5 is specifically upregulated by F. tularensis in infected THP-1 human monocytes. Furthermore, we show that SLC1A5 downregulation decreases intracellular bacterial multiplication, supporting the involvement of SLC1A5 in F. tularensis infection. Notably, after entry of F. tularensis into cells and during the whole infection, the highly glycosylated form of SLC1A5 was deglycosylated only by bacteria capable of cytosolic multiplication. These data suggest that intracellular replication of F. tularensis depends on the function of host cell SLC1A5. Our results are the first, which show that Francisella intracellular multiplication in human monocyte cytoplasm is associated with a post-translational modification of a eukaryotic amino acid transporter.


Subject(s)
Amino Acid Transport System ASC/biosynthesis , Francisella tularensis/pathogenicity , Host-Pathogen Interactions , Monocytes/microbiology , Amino Acid Transport Systems , Bacteria , Cell Line , Francisella , Francisella tularensis/growth & development , Humans , Minor Histocompatibility Antigens , Up-Regulation
13.
Infect Immun ; 79(4): 1428-39, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21245269

ABSTRACT

Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. This facultative intracellular bacterium replicates in vivo mainly inside macrophages and therefore has developed strategies to resist this stressful environment. Here, we identified a novel genetic locus that is important for stress resistance and intracellular survival of F. tularensis. In silico and transcriptional analyses suggest that this locus (genes FTL_0200 to FTL_0209 in the live vaccine strain [LVS]) constitutes an operon controlled by the alternative sigma factor σ³². The first gene, FTL_0200, encodes a putative AAA+ ATPase of the MoxR subfamily. Insertion mutagenesis into genes FTL_0200, FTL_0205, and FTL_0206 revealed a role for the locus in both intracellular multiplication and in vivo survival of F. tularensis. Deletion of gene FTL_0200 led to a mutant bacterium with increased vulnerability to various stress conditions, including oxidative and pH stresses. Proteomic analyses revealed a pleiotropic impact of the ΔFTL_0200 deletion, supporting a role as a chaperone for FTL_0200. This is the first report of a role for a MoxR family member in bacterial pathogenesis. This class of proteins is remarkably conserved among pathogenic species and may thus constitute a novel player in bacterial virulence.


Subject(s)
Francisella tularensis/genetics , Francisella tularensis/pathogenicity , Genes, Bacterial/genetics , Molecular Chaperones/genetics , Stress, Physiological/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blotting, Southern , Humans , Macrophages/metabolism , Macrophages/microbiology , Molecular Chaperones/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tularemia/genetics , Tularemia/metabolism , Virulence/genetics
14.
PLoS One ; 5(12): e14193, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21152024

ABSTRACT

BACKGROUND: Francisella tularensis is a highly virulent facultative intracellular bacterium, disseminating in vivo mainly within host mononuclear phagocytes. After entry into macrophages, F. tularensis initially resides in a phagosomal compartment, whose maturation is then arrested. Bacteria escape rapidly into the cytoplasm, where they replicate freely. We recently demonstrated that nucleolin, an eukaryotic protein able to traffic from the nucleus to the cell surface, acted as a surface receptor for F. tularensis LVS on human monocyte-like THP-1 cells. METHODOLOGY/PRINCIPAL FINDINGS: Here, we followed the fate of nucleolin once F. tularensis has been endocytosed. We first confirmed by siRNA silencing experiments that expression of nucleolin protein was essential for binding of LVS on human macrophage-type THP-1 cells. We then showed that nucleolin co-localized with intracellular bacteria in the phagosomal compartment. Strikingly, in that compartment, nucleolin also co-localized with LAMP-1, a late endosomal marker. Co-immunoprecipation assays further demonstrated an interaction of nucleolin with LAMP-1. Co-localization of nucleolin with LVS was no longer detectable at 24 h when bacteria were multiplying in the cytoplasm. In contrast, with an iglC mutant of LVS, which remains trapped into the phagosomal compartment, or with inert particles, nucleolin/bacteria co-localization remained almost constant. CONCLUSIONS/SIGNIFICANCE: We herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages.


Subject(s)
Francisella tularensis/metabolism , Monocytes/microbiology , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Tularemia/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Digitonin/metabolism , Endocytosis , Endosomes/metabolism , Humans , Lysosomal-Associated Membrane Protein 1/metabolism , Monocytes/cytology , Mutation , Phagocytosis , RNA, Small Interfering/metabolism , Saponins/metabolism , Nucleolin
15.
BMC Genomics ; 11: 625, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-21067590

ABSTRACT

BACKGROUND: Regulation of bacterial gene expression by small RNAs (sRNAs) have proved to be important for many biological processes. Francisella tularensis is a highly pathogenic Gram-negative bacterium that causes the disease tularaemia in humans and animals. Relatively little is known about the regulatory networks existing in this organism that allows it to survive in a wide array of environments and no sRNA regulators have been identified so far. RESULTS: We have used a combination of experimental assays and in silico prediction to identify sRNAs in F. tularensis strain LVS. Using a cDNA cloning and sequencing approach we have shown that F. tularensis expresses homologues of several sRNAs that are well-conserved among diverse bacteria. We have also discovered two abundant putative sRNAs that share no sequence similarity or conserved genomic context with any previously annotated regulatory transcripts. Deletion of either of these two loci led to significant changes in the expression of several mRNAs that likely include the cognate target(s) of these sRNAs. Deletion of these sRNAs did not, however, significantly alter F. tularensis growth under various stress conditions in vitro, its replication in murine cells, or its ability to induce disease in a mouse model of F. tularensis infection. We also conducted a genome-wide in silico search for intergenic loci that suggests F. tularensis encodes several other sRNAs in addition to the sRNAs found in our experimental screen. CONCLUSION: Our findings suggest that F. tularensis encodes a significant number of non-coding regulatory RNAs, including members of well conserved families of structural and housekeeping RNAs and other poorly conserved transcripts that may have evolved more recently to help F. tularensis deal with the unique and diverse set of environments with which it must contend.


Subject(s)
Francisella tularensis/genetics , RNA, Bacterial/analysis , RNA, Bacterial/genetics , Animals , Bacterial Vaccines/immunology , Base Sequence , Blotting, Northern , Cloning, Molecular , Computational Biology , DNA, Complementary/genetics , Francisella tularensis/immunology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Intracellular Space/microbiology , Macrophages/microbiology , Mice , Molecular Sequence Data , Mutation/genetics , Nucleic Acid Conformation , Oligonucleotide Array Sequence Analysis , RNA Transport/genetics , RNA, Bacterial/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Vaccines, Attenuated/immunology
16.
PLoS One ; 5(1): e8966, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20126460

ABSTRACT

Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularaemia. During its infectious cycle, F. tularensis is not only exposed to the intracellular environment of macrophages but also resides transiently in extracellular compartments, in particular during its systemic dissemination. The screening of a bank of F. tularensis LVS transposon insertion mutants on chemically defined medium (CDM) led us to identify a gene, designated trkH, encoding a homolog of the potassium uptake permease TrkH. Inactivation of trkH impaired bacterial growth in CDM. Normal growth of the mutant was only restored when CDM was supplemented with potassium at high concentration. Strikingly, although not required for intracellular survival in cell culture models, TrkH appeared to be essential for bacterial virulence in the mouse. In vivo kinetics of bacterial dissemination revealed a severe defect of multiplication of the trkH mutant in the blood of infected animals. The trkH mutant also showed impaired growth in blood ex vivo. Genome sequence analyses suggest that the Trk system constitutes the unique functional active potassium transporter in both tularensis and holarctica subspecies. Hence, the impaired survival of the trkH mutant in vivo is likely to be due to its inability to survive in the low potassium environment (1-5 mM range) of the blood. This work unravels thus the importance of potassium acquisition in the extracellular phase of the F. tularensis infectious cycle. More generally, potassium could constitute an important mineral nutrient involved in other diseases linked to systemic dissemination of bacterial pathogens.


Subject(s)
Bacterial Proteins/physiology , Francisella tularensis/pathogenicity , Potassium/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genes, Bacterial , Mice , Molecular Sequence Data , Mutation , Sequence Homology, Amino Acid
17.
Front Microbiol ; 1: 140, 2010.
Article in English | MEDLINE | ID: mdl-21687763

ABSTRACT

Francisella tularensis is a Gram-negative bacterium capable of causing the zoonotic disease tularaemia in a large number of mammalian species and in arthropods. F. tularensis is a facultative intracellular bacterium that infects and replicates in vivo mainly inside macrophages. During its systemic dissemination, F. tularensis must cope with very different life conditions (such as survival in different target organs or tissues and/or survival in the blood stream…) and may thus encounter a broad variety of carbon substrates, nitrogen, phosphor, and sulfur sources, as well as very low concentrations of essential ions. The development of recent genome-wide genetic screens have led to the identification of hundreds of genes participating to variable extents to Francisella virulence. Remarkably, an important proportion of the genes identified are related to metabolic and nutritional functions. However, the relationship between nutrition and the in vivo life cycle of F. tularensis is yet poorly understood. In this review, we will address the importance of metabolism and nutrition for F. tularensis pathogenesis, focusing specifically on amino acid and carbohydrate requirements.

18.
Curr Opin Microbiol ; 13(1): 11-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20034843

ABSTRACT

Francisella tularensis is a highly infectious Gram-negative bacterium causing the zoonotic disease tularemia. This facultative intracellular pathogen multiplies in vivo mainly inside macrophages, but has the capacity to infect and survive in many other cell types, including other phagocytic and nonphagocytic cells. In vitro, F. tularensis escapes rapidly from the phagosomal compartment and replicates in the cytoplasm of infected cells. An impressive number of novel genes related to F. tularensis pathogenesis have been identified recently. However, the information on biological functions still remains limited to a few of them. In this review, we will try to provide a comprehensive overview of the bacterial attributes, currently known-or suspected-to participate in F. tularensis virulence and will highlight the future challenges in F. tularensis research.


Subject(s)
Bacterial Proteins/metabolism , Eukaryotic Cells/microbiology , Francisella tularensis/pathogenicity , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Humans , Models, Biological , Virulence , Virulence Factors/genetics
19.
Future Microbiol ; 4(6): 713-29, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19659427

ABSTRACT

Francisella tularensis is a highly infectious, Gram-negative bacterium responsible for the disease tularemia in a broad variety of animals, including humans. F. tularensis intracellular multiplication occurs mainly in macrophages. However, F. tularensis is able to infect many other cell types, including other phagocytic (dendritic cells, polymorphonuclear leukocytes) and nonphagocytic (alveolar epithelial cells, hepatocytes, endothelial cells and fibroblasts) cells. The ability of professional phagocytic cells to engulf and kill microbes is an essential component of innate defense. The ability of F. tularensis to impair phagocyte function and survive in the cytosol of infected cells thus constitutes a central aspect of its virulence. The F. tularensis intracellular lifecycle relies on the tightly regulated expression of a series of genes. The unraveling secrets of the regulatory cascades governing the regulation of virulence of F. tularensis will be discussed along with future challenges yet to be solved.


Subject(s)
Bacterial Proteins/biosynthesis , Francisella tularensis/physiology , Francisella tularensis/pathogenicity , Gene Expression Regulation, Bacterial , Phagocytes/microbiology , Virulence Factors/biosynthesis , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Gene Order , Genes, Bacterial , Genomic Islands , Humans , Models, Biological , Molecular Sequence Data , Sequence Homology, Amino Acid , Virulence , Virulence Factors/genetics
20.
Microbiology (Reading) ; 155(Pt 8): 2560-2572, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19443547

ABSTRACT

Francisella tularensis is a highly infectious pathogen that infects animals and humans to cause the disease tularemia. The primary targets of this bacterium are macrophages, in which it replicates in the cytoplasm after escaping the initial phagosomal compartment. The ability to replicate within macrophages relies on the tightly regulated expression of a series of genes. One of the most commonly used means of coordinating the regulation of multiple genes in bacteria consists of the association of dedicated alternative sigma factors with the core of the RNA polymerase (RNAP). In silico analysis of the F. tularensis LVS genome led us to identify, in addition to the genes encoding the RNAP core (comprising the alpha1, alpha2, beta, beta' and omega subunits), one gene (designated rpoD) encoding the major sigma factor sigma(70), and a unique gene (FTL_0851) encoding a putative alternative sigma factor homologue of the sigma(32) heat-shock family (designated rpoH). Hence, F. tularensis represents one of the minority of bacterial species that possess only one or no alternative sigma factor in addition to the main factor sigma(70). In the present work, we show that FTL_0851 encodes a genuine sigma(32) factor. Transcriptomic analyses of the F. tularensis LVS heat-stress response allowed the identification of a series of orthologues of known heat-shock genes (including those for Hsp40, GroEL, GroES, DnaK, DnaJ, GrpE, ClpB and ClpP) and a number of genes implicated in Francisella virulence. A bioinformatic analysis was used to identify genes preceded by a putative sigma(32)-binding site, revealing both similarities to and differences from RpoH-mediated gene expression in Escherichia coli. Our results suggest that RpoH is an essential protein of F. tularensis, and positively regulates a subset of genes involved in the heat-shock response.


Subject(s)
Francisella tularensis/metabolism , Francisella tularensis/pathogenicity , Heat-Shock Proteins/physiology , Sigma Factor/physiology , Consensus Sequence , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Escherichia coli/metabolism , Francisella tularensis/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Genome, Bacterial , Heat-Shock Proteins/chemistry , Heat-Shock Response , Sigma Factor/chemistry , Transcription, Genetic , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...