Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Anal Chem ; 96(37): 14734-14740, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39227032

ABSTRACT

Hyperpolarized pyruvate is a widely used marker to track metabolism in vivo and a benchmark molecule for hyperpolarization methods. Here, we show how a combination of improved bullet-DNP instrumentation, an optimized sample preparation and a further sensitivity increase via a 13C-1H polarization transfer after dissolution enable the observation of pyruvate at a concentration of 250 nM immediately after dissolution. At this concentration, the experiment employs a total mass of pyruvate of only 20 ng or 180 pmol. If the concentration is increased to 45 µM, pyruvate may be detected 1 min after dissolution with a signal-to-noise ratio exceeding 50. The procedure can be extended to observe a mixture of amino acids at low micromolar concentrations.


Subject(s)
Amino Acids , Pyruvic Acid , Amino Acids/analysis , Amino Acids/chemistry , Pyruvic Acid/chemistry , Pyruvic Acid/analysis , Magnetic Resonance Spectroscopy/methods
2.
Commun Chem ; 7(1): 210, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289493

ABSTRACT

The discovery of (meta)stable pre-nucleation species (PNS) challenges the established nucleation-and-growth paradigm. While stable PNS with long lifetimes are readily accessible experimentally, identifying and characterizing early-stage intermediates with short lifetimes remains challenging. We demonstrate that species with lifetimes ≪ 5 s can be characterized by nuclear magnetic resonance spectroscopy when boosted by 'Bullet' dynamic nuclear polarization (Bullet-DNP). We investigate the previously elusive early-stage prenucleation of calcium carbonates in the highly supersaturated concentration regime, characterizing species that form within milliseconds after the encounter of calcium and carbonate ions and show that ionic pre-nucleation species not only govern the solidification of calcium carbonates at weak oversaturation but also initiate rapid precipitation events at high concentrations. Such, we report a transient co-existence of two PNS with distinct molecular sizes and different compositions. This methodological advance may open new possibilities for studying and exploiting carbonate-based material formation in unexplored parts of the phase space.

3.
J Phys Chem Lett ; 15(35): 9024-9029, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39189820

ABSTRACT

It is shown that proton spins highly polarized by dynamic nuclear polarization (DNP) retain substantial polarization upon the rapid transfer of frozen bullets from a polarizer to an NMR spectrometer. After injection in solution, the resulting hyperpolarization in aliphatic chains comprises population imbalances between singlet and triplet states of geminal protons and combinations thereof. These hyperpolarized long-lived states (LLSs) can be reconverted into observable transverse magnetization by polychromatic spin-lock-induced crossing (poly-SLIC). This reconversion can be achieved simultaneously in several molecules. Consecutive partial reconversion steps can be carried out to determine the lifetimes TLLS on the fly in a single experiment. The enhancement factors of hyperpolarized LLS-derived signals in our experiments are at least 2 orders of magnitude. These methods extend applications of bullet-DNP to protons in molecules containing short aliphatic chains and may be useful for drug screening.

4.
Sci Adv ; 10(28): eado2483, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996017

ABSTRACT

Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Humans , Animals , Magnetics
5.
J Phys Chem C Nanomater Interfaces ; 127(39): 19591-19598, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37817917

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid-solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail.

6.
Phys Chem Chem Phys ; 24(46): 28242-28249, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36382502

ABSTRACT

Radicals serve as a source of polarization in dynamic nuclear polarization, but may also act as polarization sink, in particular at low field. Additionally, if the couplings between the electron spins and different nuclear reservoirs are stronger than any of the reservoirs' couplings to the lattice, radicals can mediate hetero-nuclear polarization transfer. Here, we report radical-enhanced 13C relaxation in pyruvic acid doped with trityl. Up to 40 K, we find a linear carbon T1 field dependence between 5 mT and 2 T. We model the dependence quantitatively, and find that the presence of trityl accelerates direct hetero-nuclear polarization transfer at low fields, while at higher fields 13C relaxation is diffusion limited. Measurements of hetero-nuclear polarization transfer up to 600 mT confirm the predicted radical-mediated proton-carbon mixing.

7.
J Phys Chem Lett ; 13(44): 10370-10376, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36316011

ABSTRACT

In dynamic nuclear polarization (DNP), radicals such as trityl provide a source for high nuclear spin polarization. Conversely, during the low-field transfer of hyperpolarized solids, the radicals' dipolar or Non-Zeeman reservoir may act as a powerful nuclear polarization sink. Here, we report the low-temperature proton spin relaxation in pyruvic acid doped with trityl, for fields from 5 mT to 2 T. We estimate the heat capacity of the radical Non-Zeeman reservoir experimentally and show that a recent formalism by Wenckebach yields a parameter-free, yet quantitative model for the entire field range.


Subject(s)
Protons , Pyruvic Acid , Sulfhydryl Compounds
8.
Magn Reson (Gott) ; 2(2): 815-825, 2021.
Article in English | MEDLINE | ID: mdl-37905208

ABSTRACT

In dissolution-dynamic nuclear polarization, a hyperpolarized solid is dissolved with a jet of hot solvent. The solution is then transferred to a secondary magnet, where spectra can be recorded with improved sensitivity. In bullet-dynamic nuclear polarization this order is reversed. Pressurized gas is used to rapidly transfer the hyperpolarized solid to the secondary magnet, and the hyperpolarized solid is dissolved only upon arrival. A potential advantage of this approach is that it may avoid excessive dilution and the associated signal loss, in particular for small sample quantities. Previously, we have shown that liquid-state NMR spectra with polarization levels of up to 30 % may be recorded within less than 1 s after the departure of the hyperpolarized solid from the polarizing magnet. The resolution of the recorded spectra however was limited. The system consumed significant amounts of liquid helium, and substantial manual work was required in between experiments to prepare for the next shot. Here, we present a new bullet-DNP (dynamic nuclear polarization) system that addresses these limitations.

9.
Nat Commun ; 10(1): 1733, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988293

ABSTRACT

In dissolution-dynamic nuclear polarization, nuclear spins are hyperpolarized at cryogenic temperatures using radicals and microwave irradiation. The hyperpolarized solid is dissolved with hot solvent and the solution is transferred to a secondary magnet where strongly enhanced magnetic resonance signals are observed. Here we present a method for transferring the hyperpolarized solid. A bullet containing the frozen, hyperpolarized sample is ejected using pressurized helium gas, and shot into a receiving structure in the secondary magnet, where the bullet is retained and the polarized solid is dissolved rapidly. The transfer takes approximately 70 ms. A solenoid, wound along the entire transfer path ensures adiabatic transfer and limits radical-induced low-field relaxation. The method is fast and scalable towards small volumes suitable for high-resolution nuclear magnetic resonance spectroscopy while maintaining high concentrations of the target molecule. Polarization levels of approximately 30% have been observed for 1-13C-labelled pyruvic acid in solution.

10.
Faraday Discuss ; 212(0): 517-532, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30238100

ABSTRACT

We present a 17O and 1H NMR study of molecular endofullerene H2O@C60 dissolved in the nematic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA). The 17O NMR peak is split into five components by the 17O residual quadrupolar coupling, each of which is split into a triplet by the 1H-17O residual dipolar coupling and scalar coupling. The splittings are analysed in terms of the partial alignment of the encapsulated water molecules. Order parameters describing the alignment are estimated. It is found that the preferential orientation of the endohedral water molecule has the molecular plane perpendicular to the liquid crystal director.

11.
Phys Rev Lett ; 120(26): 266001, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004780

ABSTRACT

Water exists in two forms, para and ortho, that have nuclear spin states with different symmetries. Here we report the conversion of fullerene-encapsulated para water to ortho water. The enrichment of para water at low temperatures is monitored via changes in the electrical polarizability of the material. Upon rapid dissolution of the material in toluene the excess para water converts to ortho water. In H_{2}^{16}O@C_{60} the conversion leads to a slow increase in the NMR signal. In H_{2}^{17}O@C_{60} the conversion gives rise to weak signal enhancements attributed to quantum-rotor-induced nuclear spin polarization. The time constants for the para-to-ortho conversion of fullerene-encapsulated water in ambient temperature solution are estimated as 30±4 s for the ^{16}O isotopolog of water, and 16±3 s for the ^{17}O isotopolog.

12.
Phys Chem Chem Phys ; 20(15): 9755-9759, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29595200

ABSTRACT

Monodeuterated methyl groups may support a long-lived nuclear spin state, with a relaxation time exceeding the conventional spin-lattice relaxation time T1. Dissolution-DNP (dynamic nuclear polarization) may be used to hyperpolarize such a long-lived spin state. This is demonstrated for the CH2D groups of a piperidine derivative. The polarized sample is manipulated in the ambient magnetic field of the laboratory, without destruction of the hyperpolarized singlet order. Strongly enhanced CH2D signals are observed more than one minute after dissolution, even in the presence of paramagnetic radicals, by which time the NMR signal from the hyperpolarized proton magnetization has completely disappeared.

13.
Magn Reson Chem ; 56(7): 610-618, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29460384

ABSTRACT

Quantum-rotor-induced polarization is closely related to para-hydrogen-induced polarization. In both cases, the hyperpolarized spin order derives from rotational interaction and the Pauli principle by which the symmetry of the rotational ground state dictates the symmetry of the associated nuclear spin state. In quantum-rotor-induced polarization, there may be several spin states associated with the rotational ground state, and the hyperpolarization is typically generated by hetero-nuclear cross-relaxation. This review discusses preconditions for quantum-rotor-induced polarization for both the 1-dimensional methyl rotor and the asymmetric rotor H217 O@C60 , that is, a single water molecule encapsulated in fullerene C60 . Experimental results are presented for both rotors.

14.
Chemphyschem ; 19(3): 251-255, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29236341

ABSTRACT

The 17 O isotopomer of the water-endofullerene H2 O@C60 displays a remarkable proton NMR spectrum, with six well resolved peaks. These peaks are due to the J-coupling between the water protons and the 17 O nucleus, which has spin-5/2. The resolution of these peaks is enabled by the suppression of water proton exchange by the fullerene cage. The six peaks display an unusual pattern of linewidths, which we model by a Liouville-space treatment of scalar relaxation due to quadrupolar relaxation of the 17 O nuclei. The data are consistent with rotational diffusion of the water molecules on the sub-picosecond timescale.

15.
J Magn Reson ; 286: 158-162, 2018 01.
Article in English | MEDLINE | ID: mdl-29253726

ABSTRACT

In cryogenic dissolution NMR experiments, a substance of interest is allowed to rest in a strong magnetic field at cryogenic temperature, before dissolving the substance in a warm solvent, transferring it to a high-resolution NMR spectrometer, and observing the solution-state NMR spectrum. In some cases, negative enhancements of the 13C NMR signals are observed, which have been attributed to quantum-rotor-induced polarization. We show that in the case of acetone (propan-2-one) the negative signal enhancements of the methyl 13C sites may be understood by invoking conventional cross-relaxation within the methyl groups. The 1H nuclei acquire a relative large net polarization through thermal equilibration in a magnetic field at low temperature, facilitated by the methyl rotation which acts as a relaxation sink; after dissolution, the 1H magnetization slowly returns to thermal equilibrium at high temperature, in part by cross-relaxation processes, which induce a transient negative polarization of nearby 13C nuclei. We provide evidence for this mechanism experimentally and theoretically by saturating the 1H magnetization using a radiofrequency field pulse sequence before dissolution and comparing the 13C magnetization evolution after dissolution with the results obtained from a conventional 1H-13C cross relaxation model of the CH3 moieties in acetone.

16.
J Phys Chem Lett ; 8(15): 3549-3555, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28708395

ABSTRACT

We have induced hyperpolarized long-lived states in compounds containing 13C-bearing methyl groups by dynamic nuclear polarization (DNP) at cryogenic temperatures, followed by dissolution with a warm solvent. The hyperpolarized methyl long-lived states give rise to enhanced antiphase 13C NMR signals in solution, which often persist for times much longer than the 13C and 1H spin-lattice relaxation times under the same conditions. The DNP-induced effects are similar to quantum-rotor-induced polarization (QRIP) but are observed in a wider range of compounds because they do not depend critically on the height of the rotational barrier. We interpret our observations with a model in which nuclear Zeeman and methyl tunnelling reservoirs adopt an approximately uniform temperature, under DNP conditions. The generation of hyperpolarized NMR signals that persist for relatively long times in a range of methyl-bearing substances may be important for applications such as investigations of metabolism, enzymatic reactions, protein-ligand binding, drug screening, and molecular imaging.

17.
Phys Chem Chem Phys ; 19(19): 11793-11801, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28443877

ABSTRACT

We report the NMR of the molecular endofullerenes H2@C60, H2O@C60 and HF@C60 dissolved in the nematic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline (MBBA). The 1H NMR lines of H2 and H2O display a doublet splitting due to residual dipole-dipole coupling. The dipolar splitting depends on temperature in the nematic phase and vanishes above the nematic-isotropic phase transition. The 19F spectrum of HF@C60 dissolved in MBBA displays a doublet splitting in the nematic phase, with contributions from the 1H-19F dipole-dipole coupling and J-coupling. The phenomena are analyzed using a model in which the fullerene cages acquire a geometrical distortion, either through interaction with the liquid crystal environment, or through their interaction with the endohedral molecules. The distorted cages become partially oriented with respect to the liquid crystal director, and the endohedral molecules become partially oriented with respect to the distorted cages.

18.
Nat Chem ; 8(10): 953-7, 2016 10.
Article in English | MEDLINE | ID: mdl-27657872

ABSTRACT

The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large (1)H-(19)F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

19.
Nat Commun ; 6: 8112, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26299447

ABSTRACT

Water exists in two spin isomers, ortho and para, that have different nuclear spin states. In bulk water, rapid proton exchange and hindered molecular rotation obscure the direct observation of two spin isomers. The supramolecular endofullerene H2O@C60 provides freely rotating, isolated water molecules even at cryogenic temperatures. Here we show that the bulk dielectric constant of this substance depends on the ortho/para ratio, and changes slowly in time after a sudden temperature jump, due to nuclear spin conversion. The attribution of the effect to ortho-para conversion is validated by comparison with nuclear magnetic resonance and quantum theory. The change in dielectric constant is consistent with an electric dipole moment of 0.51±0.05 Debye for an encapsulated water molecule, indicating the partial shielding of the water dipole by the encapsulating cage. The dependence of bulk dielectric constant on nuclear spin isomer composition appears to be a previously unreported physical phenomenon.

20.
J Chem Phys ; 142(4): 044506, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25637994

ABSTRACT

Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

SELECTION OF CITATIONS
SEARCH DETAIL