Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Virol ; 88(5): 2461-80, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335314

ABSTRACT

UNLABELLED: Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE: The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.


Subject(s)
Multigene Family , Mycobacteriophages/classification , Mycobacteriophages/genetics , Mycobacterium smegmatis/virology , RNA, Transfer/genetics , RNA, Viral , Base Composition , Base Sequence , Codon , Conserved Sequence , Gene Order , Genome Size , Genome, Viral , Inverted Repeat Sequences , Lysogeny/genetics , Mycobacteriophages/ultrastructure , Open Reading Frames , Phylogeny , RNA, Transfer/chemistry , Repetitive Sequences, Nucleic Acid , Sequence Alignment , Virion/genetics , Virion/ultrastructure , Virus Assembly/genetics
2.
J Cardiovasc Magn Reson ; 15: 6, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23324403

ABSTRACT

BACKGROUND: Echocardiography (echo) is a first line test to assess cardiac structure and function. It is not known if cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) ordered during routine clinical practice in selected patients can add additional prognostic information after routine echo. We assessed whether CMR improves outcomes prediction after contemporaneous echo, which may have implications for efforts to optimize processes of care, assess effectiveness, and allocate limited health care resources. METHODS AND RESULTS: We prospectively enrolled 1044 consecutive patients referred for CMR. There were 38 deaths and 3 cardiac transplants over a median follow-up of 1.0 years (IQR 0.4-1.5). We first reproduced previous survival curve strata (presence of LGE and ejection fraction (EF) < 50%) for transplant free survival, to support generalizability of any findings. Then, in a subset (n = 444) with contemporaneous echo (median 3 days apart, IQR 1-9), EF by echo (assessed visually) or CMR were modestly correlated (R(2) = 0.66, p < 0.001), and 30 deaths and 3 transplants occurred over a median follow-up of 0.83 years (IQR 0.29-1.40). CMR EF predicted mortality better than echo EF in univariable Cox models (Integrated Discrimination Improvement (IDI) 0.018, 95% CI 0.008-0.034; Net Reclassification Improvement (NRI) 0.51, 95% CI 0.11-0.85). Finally, LGE further improved prediction beyond EF as determined by hazard ratios, NRI, and IDI in all Cox models predicting mortality or transplant free survival, adjusting for age, gender, wall motion, and EF. CONCLUSIONS: Among those referred for CMR after echocardiography, CMR with LGE further improves risk stratification of individuals at risk for death or death/cardiac transplant.


Subject(s)
Contrast Media , Echocardiography , Heart Diseases/diagnosis , Heterocyclic Compounds , Magnetic Resonance Imaging, Cine , Organometallic Compounds , Adult , Aged , Chi-Square Distribution , Disease-Free Survival , Female , Gadolinium , Heart Diseases/diagnostic imaging , Heart Diseases/mortality , Heart Diseases/pathology , Heart Diseases/physiopathology , Heart Diseases/therapy , Heart Transplantation , Humans , Kaplan-Meier Estimate , Linear Models , Male , Middle Aged , Myocardium/pathology , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Prospective Studies , Risk Factors , Stroke Volume , Time Factors , Ventricular Function, Left
3.
Circulation ; 126(10): 1206-16, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22851543

ABSTRACT

BACKGROUND: Extracellular matrix expansion may be a fundamental feature of adverse myocardial remodeling, it appears to be treatable, and its measurement may improve risk stratification. Yet, the relationship between mortality and extracellular matrix is not clear because of difficulties with its measurement. To assess its relationship with outcomes, we used novel, validated cardiovascular magnetic resonance techniques to quantify the full spectrum of extracellular matrix expansion not readily detectable by conventional cardiovascular magnetic resonance. METHODS AND RESULTS: We recruited 793 consecutive patients at the time of cardiovascular magnetic resonance without amyloidosis or hypertrophic cardiomyopathy as well as 9 healthy volunteers (ages 20-50 years). We measured the extracellular volume fraction (ECV) to quantify the extracellular matrix expansion in myocardium without myocardial infarction. ECV uses gadolinium contrast as an extracellular space marker based on T1 measures of blood and myocardium pre- and post-gadolinium contrast and hematocrit measurement. In volunteers, ECV ranged from 21.7% to 26.2%, but in patients it ranged from 21.0% to 45.8%, indicating considerable burden. There were 39 deaths over a median follow-up of 0.8 years (interquartile range 0.5-1.2 years), and 43 individuals who experienced the composite end point of death/cardiac transplant/left ventricular assist device implantation. In Cox regression models, ECV related to all-cause mortality and the composite end point (hazard ratio, 1.55; 95% confidence interval, 1.27-1.88 and hazard ratio, 1.48; 95% confidence interval, 1.23-1.78, respectively, for every 3% increase in ECV), adjusting for age, left ventricular ejection fraction, and myocardial infarction size. CONCLUSIONS: ECV measures of extracellular matrix expansion may predict mortality as well as other composite end points (death/cardiac transplant/left ventricular assist device implantation).


Subject(s)
Cardiac Imaging Techniques/methods , Extracellular Matrix/pathology , Heart Diseases/mortality , Heart Diseases/pathology , Magnetic Resonance Imaging/methods , Ventricular Remodeling/physiology , Adult , Aged , Comorbidity , Female , Fibrosis/pathology , Gadolinium , Heart Diseases/surgery , Humans , Male , Middle Aged , Models, Cardiovascular , Myocardium/pathology , Predictive Value of Tests , Prognosis , Proportional Hazards Models , Risk Factors , Young Adult
4.
J Cardiovasc Magn Reson ; 13: 16, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21375743

ABSTRACT

BACKGROUND: Myocardial extravascular extracellular volume fraction (Ve) measures quantify diffuse fibrosis not readily detectable by conventional late gadolinium (Gd) enhancement (LGE). Ve measurement requires steady state equilibrium between plasma and interstitial Gd contrast. While a constant infusion produces steady state, it is unclear whether a simple bolus can do the same. Given the relatively slow clearance of Gd, we hypothesized that a bolus technique accurately measures Ve, thus facilitating integration of myocardial fibrosis quantification into cardiovascular magnetic resonance (CMR) workflow routines. Assuming equivalence between techniques, we further hypothesized that Ve measures would be reproducible across scans. METHODS: In 10 volunteers (ages 20-81, median 33 yr, 3 females), we compared serial Ve measures from a single short axis slice from two scans: first, during a constant infusion, and second, 12-50 min after a bolus (0.2 mmol/kg gadoteridol) on another day. Steady state during infusion was defined when serial blood and myocardial T1 data varied <5%. We measured T1 on a 1.5 T Siemens scanner using a single-shot modified Look Locker inversion recovery sequence (MOLLI) with balanced SSFP. To shorten breath hold times, T1 values were measured with a shorter sampling scheme that was validated with spin echo relaxometry (TR = 15 sec) in CuSO4-Agar phantoms. Serial infusion vs. bolus Ve measures (n = 205) from the 10 subjects were compared with generalized estimating equations (GEE) with exchangeable correlation matrices. LGE images were also acquired 12-30 minutes after the bolus. RESULTS: No subject exhibited LGE near the short axis slices where Ve was measured. The Ve range was 19.3-29.2% and 18.4-29.1% by constant infusion and bolus, respectively. In GEE models, serial Ve measures by constant infusion and bolus did not differ significantly (difference = 0.1%, p = 0.38). For both techniques, Ve was strongly related to age (p < 0.01 for both) in GEE models, even after adjusting for heart rate. Both techniques identically sorted older individuals with higher mean Ve values. CONCLUSION: Myocardial Ve can be measured reliably and accurately 12-50 minutes after a simple bolus. Ve measures are also reproducible across CMR scans. Ve estimation can be integrated into CMR workflow easily, which may simplify research applications involving the quantification of myocardial fibrosis.


Subject(s)
Contrast Media/administration & dosage , Heart Diseases/diagnosis , Heterocyclic Compounds/administration & dosage , Magnetic Resonance Imaging , Myocardium/pathology , Organometallic Compounds/administration & dosage , Adult , Aged , Aged, 80 and over , Computer Simulation , Contrast Media/pharmacokinetics , Female , Fibrosis , Gadolinium , Heart Diseases/pathology , Heterocyclic Compounds/pharmacokinetics , Humans , Infusions, Intravenous , Injections, Intravenous , Magnetic Resonance Imaging/instrumentation , Male , Monte Carlo Method , Organometallic Compounds/pharmacokinetics , Pennsylvania , Phantoms, Imaging , Predictive Value of Tests , Reproducibility of Results , Workflow , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...