Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biodes Res ; 6: 0025, 2024.
Article in English | MEDLINE | ID: mdl-38384496

ABSTRACT

The construction of complex synthetic gene circuits with predetermined and reliable output depends on orthogonal regulatory parts that do not inadvertently interfere with the host machinery or with other circuit components. Previously, extracytoplasmic function sigma factors (ECFs), a diverse group of alternative sigma factors with distinct promoter specificities, were shown to have great potential as context-independent regulators, but so far, they have only been used in a few model species. Here, we show that the alphaproteobacterium Sinorhizobium meliloti, which has been proposed as a plant-associated bacterial chassis for synthetic biology, has a similar phylogenetic ECF acceptance range as the gammaproteobacterium Escherichia coli. A common set of orthogonal ECF-based regulators that can be used in both bacterial hosts was identified and used to create 2-step delay circuits. The genetic circuits were implemented in single copy in E. coli by chromosomal integration using an established method that utilizes bacteriophage integrases. In S. meliloti, we demonstrated the usability of single-copy pABC plasmids as equivalent carriers of the synthetic circuits. The circuits were either implemented on a single pABC or modularly distributed on 3 such plasmids. In addition, we provide a toolbox containing pABC plasmids compatible with the Golden Gate (MoClo) cloning standard and a library of basic parts that enable the construction of ECF-based circuits in S. meliloti and in E. coli. This work contributes to building a context-independent and species-overarching ECF-based toolbox for synthetic biology applications.

2.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37318336

ABSTRACT

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Subject(s)
Paracoccus denitrificans , Acetyl Coenzyme A/metabolism , Paracoccus denitrificans/genetics , Paracoccus denitrificans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Glyoxylates/metabolism
3.
J Biotechnol ; 329: 80-91, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33539896

ABSTRACT

The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.


Subject(s)
Sinorhizobium meliloti , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Medicago sativa/metabolism , Nitrogen Fixation , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Symbiosis/genetics
4.
mBio ; 13(1): e0004422, 2021 02 22.
Article in English | MEDLINE | ID: mdl-35164555

ABSTRACT

Myxococcus xanthus has a nutrient-regulated biphasic life cycle forming predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. The second messenger 3'-5', 3'-5 cyclic di-GMP (c-di-GMP) is essential during both stages of the life cycle; however, different enzymes involved in c-di-GMP synthesis and degradation as well as several c-di-GMP receptors are important during distinct life cycle stages. To address this stage specificity, we determined transcript levels using transcriptome sequencing (RNA-seq) and transcription start sites using Cappable sequencing (Cappable-seq) during growth and development genome wide. All 70 genes encoding c-di-GMP-associated proteins were expressed, with 28 upregulated and 10 downregulated during development. Specifically, the three genes encoding enzymatically active proteins with a stage-specific function were expressed stage specifically. By combining operon mapping with published chromatin immunoprecipitation sequencing (ChIP-seq) data for MrpC (M. Robinson, B. Son, D. Kroos, L. Kroos, BMC Genomics 15:1123, 2014, http://dx.doi.org/10.1186/1471-2164-15-1123), the cAMP receptor protein (CRP)-like master regulator of development, we identified nine developmentally regulated genes as regulated by MrpC. In particular, MrpC directly represses the expression of dmxB, which encodes the diguanylate cyclase DmxB that is essential for development and responsible for the c-di-GMP increase during development. Moreover, MrpC directly activates the transcription of pmxA, which encodes a bifunctional phosphodiesterase that degrades c-di-GMP and 3',3'-cGAMP in vitro and is essential for development. Thereby, MrpC regulates and curbs the cellular pools of c-di-GMP and 3',3'-cGAMP during development. We conclude that temporal regulation of the synthesis of proteins involved in c-di-GMP metabolism contributes to c-di-GMP signaling specificity. MrpC is important for this regulation, thereby being a key regulator of developmental cyclic di-nucleotide metabolism in M. xanthus. IMPORTANCE The second messenger c-di-GMP is important during both stages of the nutrient-regulated biphasic life cycle of Myxococcus xanthus with the formation of predatory swarms in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. However, different enzymes involved in c-di-GMP synthesis and degradation are important during distinct life cycle stages. Here, we show that the three genes encoding enzymatically active proteins with a stage-specific function are expressed stage specifically. Moreover, we find that the master transcriptional regulator of development MrpC directly regulates the expression of dmxB, which encodes the diguanylate cyclase DmxB that is essential for development, and of pmxA, which encodes a bifunctional phosphodiesterase that degrades c-di-GMP and 3',3'-cGAMP in vitro and is essential for development. We conclude that temporal regulation of the synthesis of proteins involved in c-di-GMP metabolism contributes to c-di-GMP signaling specificity and that MrpC plays an important role in this regulation.


Subject(s)
Escherichia coli Proteins , Myxococcus xanthus , Cyclic AMP Receptor Protein/genetics , Nucleotides/metabolism , Myxococcus xanthus/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Escherichia coli Proteins/metabolism , Phosphoric Diester Hydrolases/genetics , Gene Expression Regulation, Bacterial
5.
RNA Biol ; 13(10): 1000-1010, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-27416267

ABSTRACT

The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

6.
PLoS Genet ; 12(6): e1006057, 2016 06.
Article in English | MEDLINE | ID: mdl-27272207

ABSTRACT

We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class.


Subject(s)
Argonaute Proteins/genetics , Dictyostelium/genetics , MicroRNAs/genetics , RNA, Double-Stranded/genetics , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Ectopic Gene Expression/genetics , Gene Knockout Techniques , Green Fluorescent Proteins/genetics , Nuclear Proteins/genetics
7.
PLoS One ; 10(6): e0131271, 2015.
Article in English | MEDLINE | ID: mdl-26110905

ABSTRACT

CHARACTERISTICS OF DIRS-1 MEDIATED KNOCK-DOWNS: We have previously shown that the most abundant Dictyostelium discoideum retroelement DIRS-1 is suppressed by RNAi mechanisms. Here we provide evidence that both inverted terminal repeats have strong promoter activity and that bidirectional expression apparently generates a substrate for Dicer. A cassette containing the inverted terminal repeats and a fragment of a gene of interest was sufficient to activate the RNAi response, resulting in the generation of ~21 nt siRNAs, a reduction of mRNA and protein expression of the respective endogene. Surprisingly, no transitivity was observed on the endogene. This was in contrast to previous observations, where endogenous siRNAs caused spreading on an artificial transgene. Knock-down was successful on seven target genes that we examined. In three cases a phenotypic analysis proved the efficiency of the approach. One of the target genes was apparently essential because no knock-out could be obtained; the RNAi mediated knock-down, however, resulted in a very slow growing culture indicating a still viable reduction of gene expression. ADVANTAGES OF THE DIRS-1­RNAI SYSTEM: The knock-down system required a short DNA fragment (~400 bp) of the target gene as an initial trigger. Further siRNAs were generated by RdRPs since we have shown some siRNAs with a 5'-triphosphate group. Extrachromosomal vectors facilitate the procedure and allowed for molecular and phenotypic analysis within one week. The system provides an efficient and rapid method to reduce protein levels including those of essential genes.


Subject(s)
Dictyostelium/genetics , RNA Interference , Retroelements , Gene Knockdown Techniques/methods , Genes, Protozoan , Genes, Reporter , Genetic Complementation Test , Green Fluorescent Proteins/genetics , Inverted Repeat Sequences , Models, Genetic , Phenotype , Promoter Regions, Genetic , RNA, Protozoan/genetics , RNA, Small Interfering/genetics , Recombinant Proteins/genetics
8.
J Biol Chem ; 289(51): 35124-38, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25352599

ABSTRACT

The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA- strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA- strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA-/agnB- double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA- strains was observed.


Subject(s)
Argonaute Proteins/genetics , DNA, Protozoan/genetics , Dictyostelium/genetics , Protozoan Proteins/genetics , RNA, Small Interfering/genetics , Retroelements/genetics , Argonaute Proteins/metabolism , Blotting, Western , DNA, Protozoan/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Dictyostelium/metabolism , Gene Deletion , Gene Expression , Mutation , Protozoan Proteins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transformation, Genetic
9.
Nucleic Acids Res ; 42(5): 3330-45, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24369430

ABSTRACT

Dictyostelium intermediate repeat sequence 1 (DIRS-1) is the founding member of a poorly characterized class of retrotransposable elements that contain inverse long terminal repeats and tyrosine recombinase instead of DDE-type integrase enzymes. In Dictyostelium discoideum, DIRS-1 forms clusters that adopt the function of centromeres, rendering tight retrotransposition control critical to maintaining chromosome integrity. We report that in deletion strains of the RNA-dependent RNA polymerase RrpC, full-length and shorter DIRS-1 messenger RNAs are strongly enriched. Shorter versions of a hitherto unknown long non-coding RNA in DIRS-1 antisense orientation are also enriched in rrpC- strains. Concurrent with the accumulation of long transcripts, the vast majority of small (21 mer) DIRS-1 RNAs vanish in rrpC- strains. RNASeq reveals an asymmetric distribution of the DIRS-1 small RNAs, both along DIRS-1 and with respect to sense and antisense orientation. We show that RrpC is required for post-transcriptional DIRS-1 silencing and also for spreading of RNA silencing signals. Finally, DIRS-1 mis-regulation in the absence of RrpC leads to retrotransposon mobilization. In summary, our data reveal RrpC as a key player in the silencing of centromeric retrotransposon DIRS-1. RrpC acts at the post-transcriptional level and is involved in spreading of RNA silencing signals, both in the 5' and 3' directions.


Subject(s)
Dictyostelium/genetics , RNA Interference , RNA-Dependent RNA Polymerase/physiology , Retroelements , Cell Nucleus/genetics , Dictyostelium/enzymology , Genome , Promoter Regions, Genetic , RNA, Antisense/metabolism , RNA, Messenger/metabolism , RNA, Small Untranslated/metabolism , RNA-Dependent RNA Polymerase/genetics , Terminal Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...