Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemistry ; 18(22): 6776-80, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22511449

ABSTRACT

Molybdenum(VI)peroxide species, formed in the reaction of Mo(VI) complexes with peroxides, are able to epoxidize >C=C< double bonds heterolytically. In this study, theoretical and experimental evidence is provided for a kinetically competing reaction reaction of such molybdenum(VI)peroxide species with additional peroxide reagent, leading to molybdenum(VI)trioxide species, which easily decompose into radicals. Under epoxidation conditions, those radicals will reduce the selectivity, due to the formation of allylic byproducts. The involved reaction pathways are characterized by DFT calculations, providing kinetic parameters that are in good agreement with the experimental observations.

2.
ChemSusChem ; 4(11): 1613-21, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-21901836

ABSTRACT

The thermal oxidation of the renewable olefin ß-pinene with molecular oxygen was experimentally and computationally investigated. Peroxyl radicals abstract weakly bonded allylic hydrogen atoms from the substrate, yielding allylic hydroperoxides (i.e., myrtenyl and pinocarvyl hydroperoxide). In addition, peroxyl radicals add to the C=C bond of the substrate to form an epoxide. It was found that a relatively high peroxyl radical concentration, together with the high rate of peroxyl cross-reactions, make radical-radical reactions surprisingly important for this particular substrate. Approximately 60 % of these peroxyl cross-reactions lead to termination (radical destruction), keeping a radical chain length of approximately 4 at 10 % conversion. Numerical simulation of the reaction-based on the proposed reaction mechanism and known or predicted rate constants-demonstrate the importance of peroxyl cross-reactions for the formation of alkoxyl radicals, which are the precursor of alcohol and ketone products.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Monoterpenes/chemistry , Alcohols/chemistry , Bicyclic Monoterpenes , Epoxy Compounds/chemistry , Isomerism , Ketones/chemistry , Kinetics , Oxidation-Reduction , Peroxides/chemistry , Quantum Theory , Temperature
3.
J Phys Chem A ; 114(11): 3962-8, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-19821594

ABSTRACT

In this paper, a systematic study on preparation of multiwalled carbon nanotube (MWCNT)-supported nickel catalyst is pursued. Functional groups are introduced on the surface of MWCNTs using nitric acid, sulfuric acid, and partial oxidation in air. Nickel oxide nanoparticles are formed on the surface of functionalized multiwalled carbon nanotubes by incipient wetness impregnation of nickel nitrate, followed by calcination in air. The effects of acid type and concentration, acid treatment time, partial oxidation, nickel loading, precursor solvent, and calcination temperature on the size of the nickel nanoparticles and homogeneity of the composite material are evaluated. Characteristics of the Ni/MWCNT catalysts were examined using BET, scanning transmission electron microscopy, X-ray diffraction, thermogravimetric analysis in air and nitrogen, temperature-programmed reduction, X-ray photoelectron spectroscopy, acid-base titration, and zeta-potential analyzer. Results of this work are useful for formulating CNT-supported nickel catalysts for a wide range of different applications, such as reforming of hydrocarbons, catalytic hydrothermal gasification of biomass, and energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL