Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685260

ABSTRACT

T-cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a central role in the control of the virus. In this study, we evaluated the performance of T-Track® SARS-CoV-2, a novel CE-marked quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels in response to the S1 and NP SARS-CoV-2 antigens, in 335 participants with or without a history of SARS-CoV-2 infection and vaccination, respectively. Of the 62 convalescent donors, 100% responded to S1 and 88.7% to NP antigens. In comparison, of the 68 naïve donors, 4.4% were reactive to S1 and 19.1% to NP. Convalescent donors <50 and ≥50 years of age demonstrated a 100% S1 reactivity and an 89.1% and 87.5% NP reactivity, respectively. T-cell responses by T-Track® SARS-CoV-2 and IgG serology by recomLine SARS-CoV-2 IgG according to the time from the last immunisation (by vaccination or viral infection) were comparable. Both assays showed a persistent cellular and humoral response for at least 36 weeks post immunisation in vaccinated and convalescent donors. Our results demonstrate the very good performance of the T-Track® SARS-CoV-2 molecular assay and suggest that it might be suitable to monitor the SARS-CoV-2-specific T-cell response in COVID-19 vaccinations trials and cross-reactivity studies.

2.
Diagnostics (Basel) ; 13(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36832246

ABSTRACT

Tuberculosis (TB) is one of the leading causes of death by an infectious disease. It remains a major health burden worldwide, in part due to misdiagnosis. Therefore, improved diagnostic tests allowing the faster and more reliable diagnosis of patients with active TB are urgently needed. This prospective study examined the performance of the new molecular whole-blood test T-Track® TB, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels, and compared it to that of the QuantiFERON®-TB Gold Plus (QFT-Plus) enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and agreement analyses were conducted on the whole blood of 181 active TB patients and 163 non-TB controls. T-Track® TB presented sensitivity of 94.9% and specificity of 93.8% for the detection of active TB vs. non-TB controls. In comparison, the QFT-Plus ELISA showed sensitivity of 84.3%. The sensitivity of T-Track® TB was significantly higher (p < 0.001) than that of QFT-Plus. The overall agreement of T-Track® TB with QFT-Plus to diagnose active TB was 87.9%. Out of 21 samples with discordant results, 19 were correctly classified by T-Track® TB while misclassified by QFT-Plus (T-Track® TB-positive/QFT-Plus-negative), and two samples were misclassified by T-Track® TB while correctly classified by QFT-Plus (T-Track® TB-negative/QFT-Plus-positive). Our results demonstrate the excellent performance of the T-Track® TB molecular assay and its suitability to accurately detect TB infection and discriminate active TB patients from non-infected controls.

3.
Sci Rep ; 8(1): 11264, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050069

ABSTRACT

The partially protective phenotype observed in HIV-infected long-term-non-progressors is often associated with certain HLA alleles, thus indicating that cytotoxic T lymphocyte (CTL) responses play a crucial role in combating virus replication. However, both the vast variability of HIV and the HLA diversity impose a challenge on elicitation of broad and effective CTL responses. Therefore, we conceived an algorithm for the enrichment of CD8+ T cell epitopes in HIV's Gag protein, respecting functional preservation to enable cross-presentation. Experimentally identified epitopes were compared to a Gag reference sequence. Amino-acid-substitutions (AAS) were assessed for their impact on Gag's budding-function using a trained classifier that considers structural models and sequence conservation. Experimental assessment of Gag-variants harboring selected AAS demonstrated an apparent classifier-precision of 100%. Compatible epitopes were assigned an immunological score that incorporates features such as conservation or HLA-association in a user-defined weighted manner. Using a genetic algorithm, the epitopes were incorporated in an iterative manner into novel T-cell-epitope-enriched Gag sequences (TeeGag). Computational evaluation showed that these antigen candidates harbor a higher fraction of epitopes with higher score as compared to natural Gag isolates and other artificial antigen designs. Thus, these designer sequences qualify as next-generation antigen candidates for induction of broader CTL responses.


Subject(s)
AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Gene Products, gag/immunology , HIV Infections/prevention & control , HIV-1/immunology , T-Lymphocytes, Cytotoxic/immunology , AIDS Vaccines/genetics , AIDS Vaccines/isolation & purification , Computational Biology/methods , Epitopes, T-Lymphocyte/genetics , Gene Products, gag/genetics , HIV Infections/immunology , HIV-1/genetics , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...