Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 12(10): 2619-2630, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28849908

ABSTRACT

Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions.


Subject(s)
Bone Marrow Cells/physiology , Carrier Proteins/metabolism , Cell Differentiation/physiology , Osteoclasts/physiology , Animals , Carrier Proteins/genetics , Computational Biology , Humans , Models, Molecular , Multigene Family , Protein Array Analysis , Protein Conformation , Protein Domains , Stem Cells
2.
J Med Chem ; 60(16): 6998-7011, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28714688

ABSTRACT

The bromodomain and plant homeodomain finger-containing (BRPF) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Here, we describe NI-57 (16) as new pan-BRPF chemical probe of the bromodomain (BRD) of the BRPFs. Inhibitor 16 preferentially bound the BRD of BRPF1 and BRPF2 over BRPF3, whereas binding to BRD9 was weaker. Compound 16 has excellent selectivity over nonclass IV BRD proteins. Target engagement of BRPF1B and BRPF2 with 16 was demonstrated in nanoBRET and FRAP assays. The binding of 16 to BRPF1B was rationalized through an X-ray cocrystal structure determination, which showed a flipped binding orientation when compared to previous structures. We report studies that show 16 has functional activity in cellular assays by modulation of the phenotype at low micromolar concentrations in both cancer and inflammatory models. Pharmacokinetic data for 16 was generated in mouse with single dose administration showing favorable oral bioavailability.


Subject(s)
Quinolones/pharmacology , Sulfonamides/pharmacology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins , Drug Design , Drug Stability , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Nuclear Proteins/metabolism , Protein Interaction Domains and Motifs , Quinolones/administration & dosage , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
3.
Cancer Med ; 4(2): 253-67, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25490861

ABSTRACT

Molecular mechanisms underlying the development of resistance to platinum-based treatment in patients with ovarian cancer remain poorly understood. This is mainly due to the lack of appropriate in vivo models allowing the identification of resistance-related factors. In this study, we used human whole-genome microarrays and linear model analysis to identify potential resistance-related genes by comparing the expression profiles of the parental human ovarian cancer model A2780 and its platinum-resistant variant A2780cis before and after carboplatin treatment in vivo. Growth differentiation factor 15 (GDF15) was identified as one of five potential resistance-related genes in the A2780cis tumor model. Although A2780-bearing mice showed a strong carboplatin-induced increase of GDF15 plasma levels, the basal higher GDF15 plasma levels of A2780cis-bearing mice showed no further increase after short-term or long-term carboplatin treatment. This correlated with a decreased DNA damage response, enhanced AKT survival signaling and abrogated cell cycle arrest in the carboplatin-treated A2780cis tumors. Furthermore, knockdown of GDF15 in A2780cis cells did not alter cell proliferation but enhanced cell migration and colony size in vitro. Interestingly, in vivo knockdown of GDF15 in the A2780cis model led to a basal-enhanced tumor growth, but increased sensitivity to carboplatin treatment as compared to the control-transduced A2780cis tumors. This was associated with larger necrotic areas, a lobular tumor structure and increased p53 and p16 expression of the carboplatin-treated shGDF15-A2780cis tumors. Furthermore, shRNA-mediated GDF15 knockdown abrogated p27 expression as compared to control-transduced A2780cis tumors. In conclusion, these data show that GDF15 may contribute to carboplatin resistance by suppressing tumor growth through p27. These data show that GDF15 might serve as a novel treatment target in women with platinum-resistant ovarian cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Carboplatin/administration & dosage , Cyclin-Dependent Kinase Inhibitor p27/genetics , Drug Resistance, Neoplasm , Growth Differentiation Factor 15/genetics , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Carboplatin/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Mice , Mice, SCID , Oligonucleotide Array Sequence Analysis , Ovarian Neoplasms/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...