Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(6)2022 03 15.
Article in English | MEDLINE | ID: mdl-35312765

ABSTRACT

Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway.


Subject(s)
Zebrafish Proteins , Zebrafish , Anastomosis, Surgical , Animals , Morphogenesis , Neovascularization, Physiologic/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
2.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34931661

ABSTRACT

Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.


Subject(s)
Blood Vessels/growth & development , Morphogenesis/genetics , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Wiskott-Aldrich Syndrome Protein/genetics , Actins/genetics , Animals , Arteries/growth & development , Arteries/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Intercellular Junctions/genetics , Veins/growth & development , Veins/metabolism , Zebrafish/genetics , Zebrafish/growth & development
3.
Development ; 148(4)2021 02 19.
Article in English | MEDLINE | ID: mdl-33547133

ABSTRACT

Previous studies have shown that Vasohibin 1 (Vash1) is stimulated by VEGFs in endothelial cells and that its overexpression interferes with angiogenesis in vivo Recently, Vash1 was found to mediate tubulin detyrosination, a post-translational modification that is implicated in many cell functions, such as cell division. Here, we used the zebrafish embryo to investigate the cellular and subcellular mechanisms of Vash1 on endothelial microtubules during formation of the trunk vasculature. We show that microtubules within venous-derived secondary sprouts are strongly and selectively detyrosinated in comparison with other endothelial cells, and that this difference is lost upon vash1 knockdown. Vash1 depletion in zebrafish specifically affected secondary sprouting from the posterior cardinal vein, increasing endothelial cell divisions and cell number in the sprouts. We show that altering secondary sprout numbers and structure upon Vash1 depletion leads to defective lymphatic vessel formation and ectopic lymphatic progenitor specification in the zebrafish trunk.


Subject(s)
Cell Cycle Proteins/genetics , Embryonic Development/genetics , Lymphangiogenesis/genetics , Zebrafish/embryology , Zebrafish/genetics , Amino Acid Sequence , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Developmental , Immunohistochemistry , Microtubules/metabolism , Models, Biological
4.
Genesis ; 58(10-11): e23391, 2020 11.
Article in English | MEDLINE | ID: mdl-32783355

ABSTRACT

The generation and maintenance of genome edited zebrafish lines is typically labor intensive due to the lack of an easy visual read-out for the modification. To facilitate this process, we have developed a novel method that relies on the inclusion of an artificial intron with a transgenic marker (InTraM) within the knock-in sequence of interest, which upon splicing produces a transcript with a precise and seamless modification. We have demonstrated this technology by replacing the stop codon of the zebrafish fli1a gene with a transcriptional activator KALTA4, using an InTraM that enables red fluorescent protein expression in the heart.


Subject(s)
Gene Editing/methods , Gene Knock-In Techniques/methods , Genes, Reporter , High-Throughput Screening Assays/methods , Animals , CRISPR-Cas Systems , Transcription Factors/genetics , Transgenes , Zebrafish , Zebrafish Proteins/genetics
5.
Development ; 146(16)2019 08 27.
Article in English | MEDLINE | ID: mdl-31375478

ABSTRACT

How developing vascular networks acquire the right balance of arteries, veins and lymphatic vessels to efficiently supply and drain tissues is poorly understood. In zebrafish embryos, the robust and regular 50:50 global balance of intersegmental veins and arteries that form along the trunk prompts the intriguing question of how does the organism keep 'count'? Previous studies have suggested that the ultimate fate of an intersegmental vessel (ISV) is determined by the identity of the approaching secondary sprout emerging from the posterior cardinal vein. Here, we show that the formation of a balanced trunk vasculature involves an early heterogeneity in endothelial cell behaviour and Notch signalling activity in the seemingly identical primary ISVs that is independent of secondary sprouting and flow. We show that Notch signalling mediates the local patterning of ISVs, and an adaptive flow-mediated mechanism subsequently fine-tunes the global balance of arteries and veins along the trunk. We propose that this dual mechanism provides the adaptability required to establish a balanced network of arteries, veins and lymphatic vessels.


Subject(s)
Body Patterning , Receptors, Notch/metabolism , Zebrafish/embryology , Animals , Arteries/embryology , Cell Polarity , Endothelial Cells/physiology , Genetic Heterogeneity , Lymphatic Vessels/embryology , Regional Blood Flow , Signal Transduction , Veins/embryology , Zebrafish/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...