Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(5): 3134-3142, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-35424261

ABSTRACT

Isothiocyanates (ITCs) are typically prepared using amines and highly toxic reagents such as thiophosgene, its derivatives, or CS2. In this work, an investigation of a multicomponent reaction (MCR) using isocyanides, elemental sulfur and amines revealed that isocyanides can be converted to isothiocyanates using sulfur and catalytic amounts of amine bases, especially DBU (down to 2 mol%). This new catalytic reaction was optimized in terms of sustainability, especially considering benign solvents such as Cyrene™ or γ-butyrolactone (GBL) under moderate heating (40 °C). Purification by column chromatography was further optimized to generate less waste by maintaining high purity of the product. Thus, E-factors as low as 0.989 were achieved and the versatility of this straightforward procedure was shown by converting 20 different isocyanides under catalytic conditions, while obtaining moderate to high yields (34-95%).

2.
Philos Trans A Math Phys Eng Sci ; 378(2176): 20190267, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32623988

ABSTRACT

Seeking a sustainable and selective approach for terpene modification, a catalyst deconvolution approach was applied to the Meinwald rearrangement of (+)-limonene oxide as a model substrate to yield dihydrocarvone. In order to identify the most suitable catalyst and reaction conditions, different Lewis acids were evaluated. Bismuth triflate proved to be the most active catalyst under mild reaction conditions, with a low catalyst loading (1 mol%) and a relatively short reaction time (3 h). The optimized reaction conditions were subsequently transferred to other terpene-based epoxides, yielding different bio-based biscarbonyl structures, which constitute interesting and valuable substances, e.g. for polymer synthesis or as fragrances. Monoepoxides derived from (R)-(-)-carvone and (+)-dihydrocarvone rearranged to the desired products with high selectivities and yields. γ-Terpinene dioxide could be transformed in a double rearrangement to the respective biscarbonyl in moderate yields. A better result was achieved for limonene dioxide after further adjustment of the protocol to reach acceptable yields with a low catalyst loading of 0.1 mol% using 2-methyl tetrahydrofuran as a sustainable solvent. Compared to many procedures described in the literature, this procedure represents a step towards an increased sustainability in terpene modification by considering several principles of Green Chemistry, such as renewable resources, catalysis and mild reaction conditions for elementary chemical transformations. This article is part of a discussion meeting issue 'Science to enable the circular economy'.

3.
Chem Commun (Camb) ; 53(40): 5553-5556, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28474022

ABSTRACT

The Ugi four-component reaction was investigated as a tool for the functionalization of peptide arrays via post-synthetic side-chain modification, mimicking post-translational processes. Additionally, as a proof of concept for the synthesis of peptidomimetics on arrays, the integration of an Ugi unit into a growing peptide chain was demonstrated.

4.
Chem Commun (Camb) ; 53(37): 5175-5178, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28439582

ABSTRACT

Palladium nanoparticles stabilized by poly(vinylpyrrolidone) catalyze Tsuji-Trost allylations in water with very high turnover numbers. The di-allylation of methylene active compounds and the allylation of bio-based phenols was performed in high yield. The allylation of lignin showed a high selectivity towards the phenolic OH groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...