Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 275, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937779

ABSTRACT

FeRh attracts intensive interest in antiferromagnetic (AFM) spintronics due to its first-order phase transition between the AFM and ferromagnetic (FM) phase, which is unique for exploring spin dynamics in coexisting phases. Here, we report lateral spin pumping by which angular momentum is transferred from FM domains into the AFM matrix during the phase transition of ultrathin FeRh films. In addition, FeRh is verified to be both an efficient spin generator and an efficient spin sink, by electrically probing vertical spin pumping from FM-FeRh into Pt and from Py into FeRh, respectively. A dramatic enhancement of damping related to AFM-FeRh is observed during the phase transition, which we prove to be dominated by lateral spin pumping across the FM/AFM interface. The discovery of lateral spin pumping provides insight into the spin dynamics of magnetic thin films with mixed-phases, and the significantly modulated damping advances its potential applications, such as ultrafast spintronics.

2.
Sci Adv ; 3(9): e1701704, 2017 09.
Article in English | MEDLINE | ID: mdl-28975152

ABSTRACT

Magnetic skyrmions are topologically protected whirls that decay through singular magnetic configurations known as Bloch points. We used Lorentz transmission electron microscopy to infer the energetics associated with the topological decay of magnetic skyrmions far from equilibrium in the chiral magnet Fe1-x Co x Si. We observed that the lifetime τ of the skyrmions depends exponentially on temperature, [Formula: see text]. The prefactor τ0 of this Arrhenius law changes by more than 30 orders of magnitude for small changes of the magnetic field, reflecting a substantial reduction of the lifetime of skyrmions by entropic effects and, thus, an extreme case of enthalpy-entropy compensation. Such compensation effects, being well known across many different scientific disciplines, affect topological transitions and, thus, topological protection on an unprecedented level.

SELECTION OF CITATIONS
SEARCH DETAIL
...