Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(42): e202310519, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37506355

ABSTRACT

Current environmental challenges and the shrinking fossil-fuel feedstock are important criteria for the next generation of polymer materials. In this context, we present a fully bio-based material, which shows promise as a thermoplastic elastomer (TPE). Due to the use of ß-farnesene and L-lactide as monomers, bio-based feedstocks, namely sugar cane and corn, can be used. A bifunctional initiator for the carbanionic polymerization was employed, to permit an efficient synthesis of ABA-type block structures. In addition, the "green" solvent MTBE (methyl tert-butyl ether) was used for the anionic polymerisation, enabling excellent solubility of the bifunctional anionic initiator. This afforded low dispersity (D=1.07 to 1.10) and telechelic polyfarnesene macroinitiators. These were employed for lactide polymerization to obtain H-shaped triblock copolymers. TEM and SAXS revealed clearly phase-separated morphologies, and tensile tests demonstrated elastic mechanical properties. The materials featured two glass transition temperatures, at - 66 °C and 51 °C as well as gyroid or cylindrical morphologies, resulting in soft elastic materials at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...