Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiology (Reading) ; 147(Pt 1): 135-43, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11160807

ABSTRACT

In Corynebacterium glutamicum, a Gram-positive soil bacterium widely used in the industrial production of amino acids, two genes encoding (putative) ammonium uptake carriers have been described. The isolation of amt was the first report of the sequence of a gene encoding a bacterial ammonium uptake system combined with the characterization of the corresponding protein. Recently, a second amt gene, amtB, with so far unknown function, was isolated. The isolation of this gene and the suggestion of a new concept for ammonium acquisition prompted the reinvestigation of ammonium transport in C. glutamicum. In this study it is shown that Amt mediates uptake of (methyl)ammonium into the cell with high affinity and strictly depending on the membrane potential. As shown by the determination of K:(m) at different pH values, ammonium/methylammonium, but not ammonia/methylamine, are substrates of Amt. AmtB exclusively accepts ammonium as a transport substrate. In addition, hints of another, until now unknown, low-affinity, ammonium-specific uptake system were found.


Subject(s)
Bacterial Proteins , Carrier Proteins/metabolism , Cation Transport Proteins , Corynebacterium/genetics , Corynebacterium/metabolism , Escherichia coli Proteins , Membrane Proteins/metabolism , Quaternary Ammonium Compounds/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Carrier Proteins/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Hydrogen-Ion Concentration , Kinetics , Membrane Proteins/genetics , Methylamines/metabolism , Transcription, Genetic , Uncoupling Agents/metabolism
2.
Mol Microbiol ; 37(4): 964-77, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10972815

ABSTRACT

The uptake and assimilation of nitrogen sources is effectively regulated in bacteria. In the Gram-negative enterobacterium Escherichia coli, the NtrB/C two-component system is responsible for the activation of transcription of different enzymes and transporters, depending on the nitrogen status of the cell. In this study, we investigated regulation of ammonium uptake in Corynebacterium glutamicum, a Gram-positive soil bacterium closely related to Mycobacterium tuberculosis. As shown by Northern blot hybridizations, regulation occurs on the level of transcription upon nitrogen starvation. In contrast to enterobacteria, a repressor protein is involved in regulation, as revealed by measurements of methylammonium uptake and beta-galactosidase activity in reporter strains. The repressor-encoding gene, designated amtR, was isolated and sequenced. Deletion of amtR led to deregulation of transcription of amt coding for the C. glutamicum (methyl)ammonium uptake system. E. coli extracts from amtR-expressing cells were applied in gel retardation experiments, and binding of AmtR to the amt upstream region was observed. By deletion analyses, a target motif for AmtR binding was identified, and binding of purified AmtR protein to this motif, ATCTATAGN1-4ATAG, was shown. Furthermore, the binding of AmtR to this sequence was proven in vivo using a yeast one-hybrid system. Subsequent studies showed that AmtR not only regulates transcription of the amt gene but also of the amtB-glnK-glnD operon encoding an amt paralogue, the signal transduction protein PII and the uridylyltransferase/uridylyl-removing enzyme, key components of the nitrogen regulatory cascade. In summary, regulation of ammonium uptake and assimilation in the high G+C content Gram-positive bacterium C. glutamicum differs significantly from the mechanism found in the low G+C content Gram-positive model organism Bacillus subtilis and from the paradigm of nitrogen control in the Gram-negative enterobacteria.


Subject(s)
Bacterial Proteins , Corynebacterium/metabolism , Nitrogen/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Artificial Gene Fusion , Base Sequence , DNA, Bacterial/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Homology, Amino Acid , Transcription, Genetic
3.
Mol Microbiol ; 32(1): 203-16, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10216873

ABSTRACT

Biosynthesis of the compatible solute glycine betaine in Bacillus subtilis confers a considerable degree of osmotic tolerance and proceeds via a two-step oxidation process of choline, with glycine betaine aldehyde as the intermediate. We have exploited the sensitivity of B. subtilis strains defective in glycine betaine production against glycine betaine aldehyde to select for mutants resistant to this toxic intermediate. These strains were also defective in choline uptake, and genetic analysis proved that two mutations affecting different genetic loci (opuB and opuC) were required for these phenotypes. Molecular analysis allowed us to demonstrate that the opuB and opuC operons each encode a binding protein-dependent ABC transport system that consists of four components. The presumed binding proteins of both ABC transporters were shown to be lipoproteins. Kinetic analysis of [14C]-choline uptake via OpuB (K(m) = 1 microM; Vmax = 21 nmol min-1 mg-1 protein) and OpuC (K(m) = 38 microM; Vmax = 75 nmol min-1 mg-1 protein) revealed that each of these ABC transporters exhibits high affinity and substantial transport capacity. Western blotting experiments with a polyclonal antiserum cross-reacting with the presumed substrate-binding proteins from both the OpuB and OpuC transporter suggested that the expression of the opuB and opuC operons is regulated in response to increasing osmolality of the growth medium. Primer extension analysis confirmed the osmotic control of opuB and allowed the identification of the promoter of this operon. The opuB and opuC operons are located close to each other on the B. subtilis chromosome, and their high sequence identity strongly suggests that these systems have evolved from a duplication event of a primordial gene cluster. Despite the close relatedness of OpuB and OpuC, these systems exhibit a striking difference in substrate specificity for osmoprotectants that would not have been predicted readily for such closely related ABC transporters.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/physiology , Bacillus subtilis/metabolism , Bacterial Proteins , Betaine/metabolism , Choline/metabolism , Evolution, Molecular , Base Sequence , Genotype , Lipoproteins/metabolism , Models, Biological , Models, Genetic , Molecular Sequence Data , Mutagenesis , Phenotype , Time Factors , Transcription, Genetic , Water-Electrolyte Balance
SELECTION OF CITATIONS
SEARCH DETAIL
...