Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(2): 697-704, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38235080

ABSTRACT

This work presents the synthesis of novel copper oxide-multiwalled carbon nanotube (CuO-MWCNT) hybrid nanostructured composites and a systematic study of their thermoelectric performance at near-room temperatures as a function of MWCNT wt% in the composite. The CuO-MWCNT hybrid nanostructured composites were synthesized by thermal oxidation of a thin metallic Cu layer pre-deposited on the MWCNT network. This resulted in the complete incorporation of MWCNTs in the nanostructured CuO matrix. The thermoelectric properties of the fabricated CuO-MWCNT composites were compared with the properties of CuO-MWCNT networks prepared by mechanical mixing and with the properties of previously reported thermoelectric [CuO]99.9[SWCNT]0.1 composites. CuO-MWCNT hybrid composites containing MWCNTs below 5 wt% showed an increase in the room-temperature thermoelectric power factor (PF) by ∼2 times compared with a bare CuO nanostructured reference thin film, by 5-50 times compared to mixed CuO-MWCNT networks, and by ∼10 times the PF of [CuO]99.9[SWCNT]0.1. The improvement of the PF was attributed to the changes in charge carrier concentration and mobility due to the processes occurring at the large-area CuO-MWCNT interfaces. The Seebeck coefficient and PF reached by the CuO-MWCNT hybrid nanostructured composites were 688 µV K-1 and ∼4 µW m-1 K-2, which exceeded the recently reported values for similar composites based on MWCNTs and the best near-room temperature inorganic thermoelectric materials such as bismuth and antimony chalcogenides and highlighted the potential of CuO-MWCNT hybrid nanostructured composites for applications related to low-grade waste heat harvesting and conversion to useable electricity.

2.
Beilstein J Nanotechnol ; 14: 683-691, 2023.
Article in English | MEDLINE | ID: mdl-37346785

ABSTRACT

Electrochemical impedance spectroscopy was applied for studying copper oxide (CuO) nanowire networks assembled between metallic microelectrodes by dielectrophoresis. The influence of relative humidity (RH) on electrical characteristics of the CuO nanowire-based system was assessed by measurements of the impedance Z. A slight increase of Z with increasing RH at low humidity was followed by a three orders of magnitude decrease of Z at RH above 50-60%. The two opposite trends observed across the range of the examined RH of 5-97% can be caused by water chemisorption and physisorption at the nanowire interface, which suppress electronic transport inside the p-type semiconductor nanowire but enhance ionic transport in the water layers adsorbed on the nanowire surface. Possible physicochemical processes at the nanowire surface are discussed in line with equivalent circuit parameters obtained by fitting impedance spectra. The new investigation data can be useful to predict the behavior of nanostructured CuO in humid environments, which is favorable for advancing technology of nanowire-based systems suitable for sensor applications.

3.
Polymers (Basel) ; 15(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38231944

ABSTRACT

This work is devoted to the development of epoxy-encapsulated zinc oxide-multiwalled carbon nanotubes (ZnO-MWCNT) hybrid nanostructured composites and the investigation of their thermoelectric performance in relation to the content of MWCNTs in the composite. For the preparation of nanocomposites, self-assembling Zn nanostructured networks were coated with a layer of dispersed MWCNTs and subjected to thermal oxidation. The resulting ZnO-MWCNT hybrid nanostructured networks were encapsulated in commercially available epoxy adhesive. It was found that encapsulation of ZnO-MWCNT hybrid networks in epoxy adhesive resulted in a simultaneous decrease in their electrical resistance by a factor of 20-60 and an increase in the Seebeck coefficient by a factor of 3-15, depending on the MWCNT content. As a result, the thermoelectric power factor of the epoxy-encapsulated ZnO-MWCNTs hybrid networks exceeded that of non-encapsulated networks by more than 3-4 orders of magnitude. This effect was attributed to the ZnO-epoxy interface's unique properties and to the MWCNTs' contribution. The processes underlying such a significant improvement of the properties of ZnO-MWCNT hybrid nanostructured networks after encapsulation in epoxy adhesive are discussed. In addition, a two-leg thermoelectric generator composed of epoxy-encapsulated ZnO-MWCNT hybrid nanocomposite as n-type leg and polydimethylsiloxane-encapsulated CuO-MWCNT hybrid nanocomposite as p-type leg characterized at room temperatures showed better performance at temperature difference 30 °C compared with the similar devices, thus proving the potential of the developed nanocomposites for applications in domestic waste heat conversion devices.

4.
Materials (Basel) ; 15(19)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36233981

ABSTRACT

Arrays of aligned carbon nanotubes (CNTs) are anisotropic nanomaterials possessing a high length-to-diameter aspect ratio, channels passing through the array, and mechanical strength along with flexibility. The arrays are produced in one step using aerosol-assisted catalytic chemical vapor deposition (CCVD), where a mixture of carbon and metal sources is fed into the hot zone of the reactor. Metal nanoparticles catalyze the growth of CNTs and, during synthesis, are partially captured into the internal cavity of CNTs. In this work, we considered various stages of multi-walled CNT (MWCNT) growth on silicon substrates from a ferrocene-toluene mixture and estimated the amount of iron in the array. The study showed that although the mixture of precursors supplies evenly to the reactor, the iron content in the upper part of the array is lower and increases toward the substrate. The size of carbon-encapsulated iron-based nanoparticles is 20-30 nm, and, according to X-ray diffraction data, most of them are iron carbide Fe3C. The reasons for the gradient distribution of iron nanoparticles in MWCNT arrays were considered, and the possibilities of controlling their distribution were evaluated.

5.
Nanomaterials (Basel) ; 11(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419203

ABSTRACT

Electrostatically actuated nanoelectromechanical (NEM) switches hold promise for operation with sharply defined ON/OFF states, high ON/OFF current ratio, low OFF state power consumption, and a compact design. The present challenge for the development of nanoelectromechanical system (NEMS) technology is fabrication of single nanowire based NEM switches. In this work, we demonstrate the first application of CuO nanowires as NEM switch active elements. We develop bottom-up and top-down approaches for NEM switch fabrication, such as CuO nanowire synthesis, lithography, etching, dielectrophoretic alignment of nanowires on electrodes, and nanomanipulations for building devices that are suitable for scalable production. Theoretical modelling finds the device geometry that is necessary for volatile switching. The modelling results are validated by constructing gateless double-clamped and single-clamped devices on-chip that show robust and repeatable switching. The proposed design and fabrication route enable the scalable integration of bottom-up synthesized nanowires in NEMS.

6.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486063

ABSTRACT

Size distribution, Young's moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by combining applied electric field and growth conditions with additional water vapour at the first stage of synthesis. Young's moduli determined from resonance and bending experiments show similar diameter dependencies and increase above 200 GPa for nanowires with diameters narrower than 50 nm. The nanowires synthesized by simple thermal oxidation possess electrical resistivities about one order of magnitude lower than the nanowires synthesized by electric field assisted approach in wet air. The high aspect ratio, mechanical strength and robust electrical properties suggest CuO nanowires as promising candidates for NEMS actuators.

7.
Sci Rep ; 9(1): 11328, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31383870

ABSTRACT

In the present work, a catalyst-free physical vapour deposition method is used to synthesize high yield of Bi2Se3 nanoribbons. By replacing standard glass or quartz substrates with aluminium covered with ultrathin porous anodized aluminium oxide (AAO), the number of synthesized nanoribbons per unit area can be increased by 20-100 times. The mechanisms of formation and yield of the nanoribbons synthesized on AAO substrates having different arrangement and size of pores are analysed and discussed. It is shown that the yield and average length of the nanoribbons can base tuned by adjustment of the synthesis parameters. Analysis of magnetotransport measurements for the individual Bi2Se3 nanoribbons transferred on a Si/SiO2 substrate show the presence of three different populations of charge carriers, originating from the Dirac surface states, bulk carriers and carriers from a trivial 2DEG from an accumulation layer at the Bi2Se3 nanoribbon interface with the substrate.

8.
Nanoscale ; 11(28): 13612-13619, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31290891

ABSTRACT

Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time the mechanical properties of GeSn nanowires (7.1-9.7 at% Sn) and assess their suitability as nanoelectromechanical (NEM) switches. Electron microscopy analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native amorphous oxide layer. Mechanical resonance and bending tests at different boundary conditions were used to obtain size-dependent Young's moduli and to relate the mechanical characteristics of the alloy nanowires to geometry and Sn incorporation. The mechanical properties of the GeSn nanowires make them highly promising for applications in next generation NEM devices.

9.
Beilstein J Nanotechnol ; 9: 271-300, 2018.
Article in English | MEDLINE | ID: mdl-29441272

ABSTRACT

This review summarizes relevant research in the field of electrostatically actuated nanobeam-based nanoelectromechanical (NEM) switches. The main switch architectures and structural elements are briefly described and compared. Investigation methods that allow for exploring coupled electromechanical interactions as well as studies of mechanically or electrically induced effects are covered. An examination of the complex nanocontact behaviour during various stages of the switching cycle is provided. The choice of the switching element and the electrode is addressed from the materials perspective, detailing the benefits and drawbacks for each. An overview of experimentally demonstrated NEM switching devices is provided, and together with their operational parameters, the reliability issues and impact of the operating environment are discussed. Finally, the most common NEM switch failure modes and the physical mechanisms behind them are reviewed and solutions proposed.

10.
Nat Commun ; 8: 14982, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28401930

ABSTRACT

Carbon-based three-dimensional aerographite networks, built from interconnected hollow tubular tetrapods of multilayer graphene, are ultra-lightweight materials recently discovered and ideal for advanced multifunctional applications. In order to predict the bulk mechanical behaviour of networks it is very important to understand the mechanics of their individual building blocks. Here we characterize the mechanical response of single aerographite tetrapods via in situ scanning electron and atomic force microscopy measurements. To understand the acquired results, which show that the overall behaviour of the tetrapod is governed by the buckling of the central joint, a mechanical nonlinear model was developed, introducing the concept of the buckling hinge. Finite element method simulations elucidate the governing buckling phenomena. The results are then generalized for tetrapods of different size-scales and shapes. These basic findings will permit better understanding of the mechanical response of the related networks and the design of similar aerogels based on graphene and other two-dimensional materials.

11.
Beilstein J Nanotechnol ; 7: 278-83, 2016.
Article in English | MEDLINE | ID: mdl-26977384

ABSTRACT

In this study we address the mechanical properties of Sb2S3 nanowires and determine their Young's modulus using in situ electric-field-induced mechanical resonance and static bending tests on individual Sb2S3 nanowires with cross-sectional areas ranging from 1.1·10(4) nm(2) to 7.8·10(4) nm(2). Mutually orthogonal resonances are observed and their origin explained by asymmetric cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young's moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young's modulus is observed for smaller thickness samples.

12.
Nutr Cancer ; 67(2): 258-65, 2015.
Article in English | MEDLINE | ID: mdl-25608053

ABSTRACT

Alkylresorcinols (ARs) are phytochemicals mainly associated with rye/wheat bran. Plasma ARs and their plasma and urine metabolites are considered as biomarkers for whole-grain rye/wheat intake. However ARs metabolite day and night variations have not been studied in prostate cancer patients yet. We investigated ARs metabolites 3, 5-dihydroxy-benzoic acid (DHBA), and 3-(3, 5-dihydroxyphenyl)-1-propanoic acid (DHPPA) in urine and plasma in prostate cancer patients and in control group. DHPPA in 12-h overnight urine correlated with the intake of rye bread and bread fiber across short time periods (3 days). Plasma DHPPA concentration was significantly greater in the prostate cancer group than in the control group. DHPPA and DHBA excretion was significantly higher in the overnight urine than in day urine in the prostate cancer group but not in the control group. DHPPA concentration in plasma in the prostate cancer group did not depend on the intake of rye bread in the previous day, suggesting an impaired metabolism of ARs metabolites in the prostate cancer group. The results of this study suggest DHPPA in 12-h overnight urine as a biomarker to estimate the intake of rye bread and bread fiber.


Subject(s)
Hydroxybenzoates/blood , Hydroxybenzoates/urine , Phenylpropionates/blood , Phenylpropionates/urine , Prostatic Neoplasms/blood , Prostatic Neoplasms/urine , Resorcinols/blood , Resorcinols/urine , Secale/metabolism , Triticum/metabolism , Aged , Biomarkers/blood , Biomarkers/urine , Bread , Case-Control Studies , Circadian Rhythm , Dietary Fiber/metabolism , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...