Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602737

ABSTRACT

Sensory differences are a core feature of autism spectrum disorders (ASD) and are predictive of other ASD core symptoms such as social difficulties. However, the neurobiological substrate underlying the functional relationship between sensory and social functioning is poorly understood. Here, we examined whether misregulation of structural plasticity in the somatosensory cortex modulates aberrant social functioning in BTBR mice, a mouse model for autism spectrum disorder-like phenotypes. By locally expressing a dominant-negative form of Cofilin (CofilinS3D; a key regulator of synaptic structure) in the somatosensory cortex, we tested whether somatosensory suppression of Cofilin activity alters social functioning in BTBR mice. Somatosensory Cofilin suppression altered social contact and nest-hide behavior of BTBR mice in a social colony, assessed for seven consecutive days. Subsequent behavioral testing revealed that altered social functioning is related to altered tactile sensory perception; CofilinS3D-treated BTBR mice showed a time-dependent difference in the sensory bedding preference task. These findings show that Cofilin suppression in the somatosensory cortex alters social functioning in BTBR mice and that this is associated with tactile sensory processing, a critical indicator of somatosensory functioning.


Subject(s)
Autism Spectrum Disorder , Somatosensory Cortex , Animals , Mice , Disease Models, Animal , Actin Depolymerizing Factors , Touch
2.
Front Behav Neurosci ; 17: 1243524, 2023.
Article in English | MEDLINE | ID: mdl-37638111

ABSTRACT

Many living organisms of the animal kingdom have the fundamental ability to form and retrieve memories. Most information is initially stored as short-term memory, which is then converted to a more stable long-term memory through a process called memory consolidation. At the neuronal level, synaptic plasticity is crucial for memory storage. It includes the formation of new spines, as well as the modification of existing spines, thereby tuning and shaping synaptic efficacy. Cofilin critically contributes to memory processes as upon activation, it regulates the shape of dendritic spines by targeting actin filaments. We previously found that prolonged activation of cofilin in hippocampal neurons attenuated the formation of long-term object-location memories. Because the modification of spine shape and structure is also essential for short-term memory formation, we determined whether overactivation of hippocampal cofilin also influences the formation of short-term memories. To this end, mice were either injected with an adeno-associated virus expressing catalytically active cofilin, or an eGFP control, in the hippocampus. We show for the first time that cofilin overactivation improves short-term memory formation in the object-location memory task, without affecting anxiety-like behavior. Surprisingly, we found no effect of cofilin overactivation on AMPA receptor expression levels. Altogether, while cofilin overactivation might negatively impact the formation of long-lasting memories, it may benefit short-term plasticity.

3.
Curr Biol ; 33(2): 298-308.e5, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36577400

ABSTRACT

It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast.


Subject(s)
Amnesia , Sleep Deprivation , Mice , Animals , Memory/physiology , Hippocampus
4.
Eur J Neurosci ; 54(8): 6972-6981, 2021 10.
Article in English | MEDLINE | ID: mdl-31965655

ABSTRACT

It is widely acknowledged that de novo protein synthesis is crucial for the formation and consolidation of long-term memories. While the basal activity of many signaling cascades that modulate protein synthesis fluctuates in a circadian fashion, it is unclear whether the temporal dynamics of protein synthesis-dependent memory consolidation vary depending on the time of day. More specifically, it is unclear whether protein synthesis inhibition affects hippocampus-dependent memory consolidation in rodents differentially across the day (i.e., the inactive phase with an abundance of sleep) and night (i.e., the active phase with little sleep). To address this question, male and female C57Bl6/J mice were trained in a contextual fear conditioning task at the beginning or the end of the light phase. Animals received a single systemic injection with the protein synthesis inhibitor anisomycin or vehicle directly, 4, 8 hr, or 11.5 hr following training, and memory was assessed after 24 hr. Here, we show that protein synthesis inhibition impaired the consolidation of context-fear memories selectively when the protein synthesis inhibitor was administered at the first three time points, irrespective of timing of training. Even though the basal activity of signaling pathways regulating de novo protein synthesis may fluctuate across the 24-hr cycle, these results suggest that the temporal dynamics of protein synthesis-dependent memory consolidation are similar for day-time and night-time learning.


Subject(s)
Memory Consolidation , Animals , Anisomycin/pharmacology , Fear , Female , Hippocampus , Male , Mice , Protein Synthesis Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...