Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 161: 222-230, 2024 May.
Article in English | MEDLINE | ID: mdl-38522268

ABSTRACT

OBJECTIVE: We compared the effective networks derived from Single Pulse Electrical Stimulation (SPES) in intracranial electrocorticography (ECoG) of awake epilepsy patients and while under general propofol-anesthesia to investigate the effect of propofol on these brain networks. METHODS: We included nine patients who underwent ECoG for epilepsy surgery evaluation. We performed SPES when the patient was awake (SPES-clinical) and repeated this under propofol-anesthesia during the surgery in which the ECoG grids were removed (SPES-propofol). We detected the cortico-cortical evoked potentials (CCEPs) with an automatic detector. We constructed two effective networks derived from SPES-clinical and SPES-propofol. We compared three network measures (indegree, outdegree and betweenness centrality), the N1-peak-latency and amplitude of CCEPs between the two effective networks. RESULTS: Fewer CCEPs were observed during SPES-propofol (median: 6.0, range: 0-29) compared to SPES-clinical (median: 10.0, range: 0-36). We found a significant correlation for the indegree, outdegree and betweenness centrality between SPES-clinical and SPES-propofol (respectively rs = 0.77, rs = 0.70, rs = 0.55, p < 0.001). The median N1-peak-latency increased from 22.0 ms during SPES-clinical to 26.4 ms during SPES-propofol. CONCLUSIONS: Our findings suggest that the number of effective network connections decreases, but network measures are only marginally affected. SIGNIFICANCE: The primary network topology is preserved under propofol.


Subject(s)
Anesthetics, Intravenous , Electrocorticography , Nerve Net , Propofol , Humans , Propofol/pharmacology , Propofol/administration & dosage , Male , Female , Adult , Electrocorticography/methods , Anesthetics, Intravenous/pharmacology , Nerve Net/drug effects , Nerve Net/physiology , Young Adult , Middle Aged , Epilepsy/physiopathology , Epilepsy/surgery , Epilepsy/drug therapy , Brain/drug effects , Brain/physiology , Adolescent , Evoked Potentials/drug effects , Evoked Potentials/physiology , Electric Stimulation
2.
Clin Neurophysiol ; 128(9): 1682-1695, 2017 09.
Article in English | MEDLINE | ID: mdl-28753456

ABSTRACT

OBJECTIVE: In postanoxic coma, EEG patterns indicate the severity of encephalopathy and typically evolve in time. We aim to improve the understanding of pathophysiological mechanisms underlying these EEG abnormalities. METHODS: We used a mean field model comprising excitatory and inhibitory neurons, local synaptic connections, and input from thalamic afferents. Anoxic damage is modeled as aggravated short-term synaptic depression, with gradual recovery over many hours. Additionally, excitatory neurotransmission is potentiated, scaling with the severity of anoxic encephalopathy. Simulations were compared with continuous EEG recordings of 155 comatose patients after cardiac arrest. RESULTS: The simulations agree well with six common categories of EEG rhythms in postanoxic encephalopathy, including typical transitions in time. Plausible results were only obtained if excitatory synapses were more severely affected by short-term synaptic depression than inhibitory synapses. CONCLUSIONS: In postanoxic encephalopathy, the evolution of EEG patterns presumably results from gradual improvement of complete synaptic failure, where excitatory synapses are more severely affected than inhibitory synapses. The range of EEG patterns depends on the excitation-inhibition imbalance, probably resulting from long-term potentiation of excitatory neurotransmission. SIGNIFICANCE: Our study is the first to relate microscopic synaptic dynamics in anoxic brain injury to both typical EEG observations and their evolution in time.


Subject(s)
Coma/physiopathology , Electroencephalography/trends , Heart Arrest/physiopathology , Hypoxia, Brain/physiopathology , Neural Networks, Computer , Synapses/physiology , Aged , Coma/diagnosis , Coma/epidemiology , Female , Heart Arrest/diagnosis , Heart Arrest/epidemiology , Humans , Hypoxia, Brain/diagnosis , Hypoxia, Brain/epidemiology , Long-Term Potentiation/physiology , Male , Membrane Potentials/physiology , Middle Aged , Netherlands/epidemiology , Synaptic Transmission/physiology
3.
Clin Neurophysiol ; 124(5): 967-81, 2013 May.
Article in English | MEDLINE | ID: mdl-23182834

ABSTRACT

OBJECTIVE: Characterization of the functional neuronal activity and connectivity within the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). METHODS: Single units were extracted from micro-electrode recording (MER) of 18 PD patients who underwent STN deep brain stimulation (DBS) surgery. The firing rate and pattern of simultaneously recorded spike trains and their coherence were analyzed. To provide a precise functional assignment of position to the observed activities, for each patient we mapped its classified multichannel STN MERs to a generic atlas representation with a sensorimotor part and a remaining part. RESULTS: Within the sensorimotor part we found significantly higher mean firing rate (P < 0.05) and significantly more burst-like activity (P < 0.05) than within the remaining part. The proportion of significant coherence in the beta band (13-30 Hz) is significantly higher in the sensorimotor part of the STN than elsewhere (P = 0.015). CONCLUSIONS: The STN sensorimotor part distinguishes itself from the remaining part with respect to beta coherence, firing rate and burst-like activity and postoperatively was found as the preferred target area. SIGNIFICANCE: Our firing behavior analysis may help to discriminate the STN sensorimotor part for the placement of the DBS electrode.


Subject(s)
Deep Brain Stimulation , Neurons/physiology , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Aged , Deep Brain Stimulation/methods , Female , Humans , Male , Microelectrodes , Middle Aged , Parkinson Disease/physiopathology , Stereotaxic Techniques , Subthalamic Nucleus/surgery , Treatment Outcome
4.
J Neural Eng ; 8(6): 066005, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21990162

ABSTRACT

We present a computational model of a thalamocortical relay neuron for exploring basal ganglia thalamocortical loop behavior in relation to Parkinson's disease and deep brain stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that oscillatory interaction within and between basal ganglia nuclei is very often accompanied by synchronization at Parkinsonian rest tremor frequencies (3-10 Hz). These oscillations have a profound influence on thalamic projections and impair the thalamic relaying of cortical input by generating rebound action potentials. Our model describes convergent inhibitory input received from basal ganglia by the thalamocortical cells based on characteristics of normal activity, and/or low-frequency oscillations (activity associated with Parkinson's disease). In addition to simulated input, we also used microelectrode recordings as inputs for the model. In the resting state, and without additional sensorimotor input, pathological rebound activity is generated for even mild Parkinsonian input. We have found a specific stimulation window of amplitudes and frequencies for periodic input, which corresponds to high-frequency DBS, and which also suppresses rebound activity for mild and even more prominent Parkinsonian input. When low-frequency pathological rebound activity disables the thalamocortical cell's ability to relay excitatory cortical input, a stimulation signal with parameter settings corresponding to our stimulation window can restore the thalamocortical cell's relay functionality.


Subject(s)
Action Potentials/physiology , Computer Simulation , Deep Brain Stimulation , Models, Neurological , Parkinson Disease/therapy , Thalamus/physiology , Animals , Deep Brain Stimulation/methods , Haplorhini , Parkinson Disease/physiopathology
5.
Neural Netw ; 24(6): 617-30, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21458229

ABSTRACT

The pedunculopontine nucleus has been suggested as a target for DBS. In this paper we propose a single compartment computational model for a PPN Type I cell and compare its dynamic behavior with experimental data. The model shows bursts after a period of hyperpolarization and spontaneous firing at 8 Hz. Bifurcation analysis of the single PPN cell shows bistability of fast and slow spiking solutions for a range of applied currents. A network model for STN, GPe and GPi produces basal ganglia output that is used as input for the PPN cell. The conductances for projections from the STN and the GPi to the PPN are determined from experimental data. The resulting behavior of the PPN cell is studied under normal and Parkinsonian conditions of the basal ganglia network. The effect of high frequency stimulation of the STN is considered as well as the effect of combined high frequency stimulation of the STN and the PPN at various frequencies. The relay properties of the PPN cell demonstrate that the combined high frequency stimulation of STN and low frequency (10 Hz, 25 Hz, 40 Hz) stimulation of PPN hardly improves the effect of exclusive STN stimulation. Moreover, PPN-DBS at low stimulation amplitude has a better effect than at higher stimulation amplitude. The effect of PPN output on the basal ganglia is investigated, in particular the effect of STN-DBS and/or PPN-DBS on the pathological firing pattern of STN and GPe cells. PPN-DBS eliminates the pathological firing pattern of STN and GPe cells, whereas STN-DBS and combined STN-DBS and PPN-DBS eliminate the pathological firing pattern only from STN cells.


Subject(s)
Deep Brain Stimulation/methods , Models, Neurological , Pedunculopontine Tegmental Nucleus/physiology , Action Potentials/physiology , Humans , Nerve Net/physiology , Neural Pathways/physiology , Neurons/physiology , Parkinson Disease/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...