Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Rapid Commun Mass Spectrom ; 38(16): e9773, 2024.
Article in English | MEDLINE | ID: mdl-38872591

ABSTRACT

RATIONALE: The isotope ratio for the internationally agreed but virtual zero-point of the carbon isotope-delta scale, Vienna Peedee belemnite (VPDB), plays a critical role in linking carbon isotope delta values to the SI. It is also a quantity used for various data processing procedures including '17O correction', clumped isotope analysis and conversion of carbon isotope delta values into other expressions of isotopic composition. A value for RVPDB(13C/12C) with small uncertainty is therefore desirable to facilitate these procedures. METHODS: The value of RVPDB(13C/12C) was determined by errors-in-variables regression of isotope delta values traceable to VPDB measured by isotope ratio mass spectrometry against isotope ratios traceable to the SI by use of gravimetric mixtures of 12C- and 13C-enriched d-glucose measured by multicollector inductively coupled plasma mass spectrometry. RESULTS: A value of RVPDB(13C/12C) = 0.0111105 ± 0.0000042 (expanded uncertainty, k = 2) was obtained. CONCLUSIONS: The new value for RVPDB(13C/12C) agrees very well with the consensus values calculated from previous measurement results proposed by Kaiser and by ourselves, as well as recent determinations independent of mass spectrometry. The expanded uncertainty of 0.4‰ when expressed as an isotope delta value is a tenfold improvement over the previous best measurement of the isotopic composition of carbon.

2.
Food Chem ; 448: 139081, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537551

ABSTRACT

Port is a famous sort of fortified wine, exclusively produced in the Douro region of Portugal. Among the various types of Port wines, the Tawny types with stated maturation ages of 10 or 20 years are among the higher quality and more expensive ones. Fraudulently producing those with a shorter maturation time than claimed, along with additions or treatments to mask this, would make production of those wines cheaper. Here, we present a method, based on Radiocarbon (14C) age determination of the ethanol and the sugar residue, to verify the maturation time of such Port wines. We successfully verified the method using single harvest year "Vintage" Port wines. We then analyzed a total of twenty 10- and 20-year-old Tawny Port wines, bought at various retail stores in the Netherlands. We found that seven of those had a significantly shorter maturation age than claimed on the label.

3.
Rapid Commun Mass Spectrom ; 38(6): e9678, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38356090

ABSTRACT

RATIONALE: SLAP is one of the two calibration materials for the isotopic water scale. By consensus the established δ18 O value is -55.5‰, although several expert laboratories measure significantly more negative δ18 OSLAP values. The real δ18 OSLAP value as such does not influence the isotopic water scale; however, knowledge of the size of isotopic scale contraction in stable isotope measurements is vital for second-order isotopes. This study describes the quantification of δ18 OSLAP with respect to δ18 OVSMOW . METHODS: SLAP-like water was quantitatively mixed with highly 18 O-enriched water to mimic VSMOW. The 18 O concentration was determined using an electron ionization quadrupole mass spectrometer. The isotopic composition of the SLAP-like and VSMOW-like waters was measured using an optical spectrometer, alongside original VSMOW and SLAP. RESULTS: This study resulted in a much more negative δ18 O value for SLAP than expected. The averaged outcome of seven independent experiments is δ18 OSLAP  = -56.33 ± 0.03‰. There is a large discrepancy between the actual isotopic measurements of even the most carefully operating isotope laboratories and the true δ18 O value. CONCLUSIONS: Although this finding as such does not influence the use of the VSMOW-SLAP scale, it raises the intriguing question of what we actually measure with our instruments and why even a fully corrected measurement can be so far off. Our result has consequences for issues like the transfer of δ18 O from and to the VPDB scale, various fractionation factors, and Δ17 O. The absolute 18 O abundance for SLAP was calculated as (1887.98 ± 0.43) × 10-6 based on the absolute 18 O abundance of VSMOW and the presented δ18 OSLAP in this paper.

4.
Front Nutr ; 10: 1255499, 2023.
Article in English | MEDLINE | ID: mdl-37810925

ABSTRACT

Accurate dietary assessment is crucial for nutrition and health research. Traditional methods, such as food records, food frequency questionnaires, and 24-hour dietary recalls (24HR), have limitations, such as the need for trained interviewers, time-consuming procedures, and inaccuracies in estimations. Novel technologies, such as image-based dietary assessment apps, have been developed to overcome these limitations. SNAQ is a novel image-based food-recognition app which, based on computer vision, assesses food type and volume, and provides nutritional information about dietary intake. This cross-sectional observational study aimed to investigate the validity of SNAQ as a dietary assessment tool for measuring energy and macronutrient intake in adult women with normal body weight (n = 30), compared to doubly labeled water (DLW), a reference method for total daily energy expenditure (TDEE). Energy intake was also estimated using a one-day 24HR for direct comparison. Bland-Altman plots, paired difference tests, and Pearson's correlation coefficient were used to assess agreement and relationships between the methods. SNAQ showed a slightly higher agreement (bias = -329.6 kcal/day) with DLW for total daily energy intake (TDEI) compared to 24HR (bias = -543.0 kcal/day). While both SNAQ and 24HR tended to underestimate TDEI, only 24HR significantly differed from DLW in this regard (p < 0.001). There was no significant relationship between estimated TDEI and TDEE using SNAQ (R2 = 27%, p = 0.50) or 24HR (R2 = 34%, p = 0.20) and there were no significant differences in energy and macronutrient intake estimates between SNAQ and 24HR (Δ = 213.4 kcal/day). In conclusion, these results indicate that SNAQ provides a closer representation of energy intake in adult women with normal body weight than 24HR when compared to DLW, but no relationship was found between the energy estimates of DLW and of the two dietary assessment tools. Further research is needed to determine the clinical relevance and support the implementation of SNAQ in research and clinical settings. Clinical trial registration: This study is registered on ClinicalTrials.gov with the unique identifier NCT04600596 (https://clinicaltrials.gov/ct2/show/NCT04600596).

5.
Isotopes Environ Health Stud ; 59(3): 309-326, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37470465

ABSTRACT

It is known that the oxygen isotope composition of CO2-in-air, when stored over longer time periods in glass sample flasks, tends to drift to more negative values while the carbon isotope composition remains stable. The exact mechanisms behind this drift were still unclear. New experimental results reveal that water already inside the flasks during sampling plays a major role in the drift of the oxygen isotopes. A drying method to remove any water sticking to the inner walls by evacuating the flasks for more than 72 h while heating to 60 °C significantly decreases drift of the oxygen isotopes. Moreover, flasks not dried with this method showed higher differences among drift rates of individual flasks. This is explained through the buildup of H2O molecules sticking to the inner walls. Humidity of the air samples in the flasks as well as surface characteristics will lead to differences among flasks. Results also show that permeability of water is higher through Viton O-ring flask seals than through polychlorotrifluoroethylene (PCTFE) shaft seals, and that the stability of flasks sealed with the latter is significantly better over time.


Subject(s)
Carbon Dioxide , Water , Oxygen Isotopes/analysis , Humidity , Carbon Isotopes/analysis , Oxygen
7.
Sci Rep ; 12(1): 6351, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428795

ABSTRACT

The doubly labelled water (DLW) method is widely used to determine energy expenditure. In this work, we demonstrate the addition of the third stable isotope, 17O, to turn it into triply labelled water (TLW), using the three isotopes measurement of optical spectrometry. We performed TLW (2H, 18O and17O) measurements for the analysis of the CO2 production (rCO2) of mice on different diets for the first time. Triply highly enriched water was injected into mice, and the isotope enrichments of the distilled blood samples of one initial and two finals were measured by an off-axis integrated cavity output spectroscopy instrument. We evaluated the impact of different calculation protocols and the values of evaporative water loss fraction. We found that the dilution space and turnover rates of 17O and 18O were equal for the same mice group, and that values of rCO2 calculated based on 18O-2H, or on 17O-2H agreed very well. This increases the reliability and redundancy of the measurements and it lowers the uncertainty in the calculated rCO2 to 3% when taking the average of two DLW methods. However, the TLW method overestimated the rCO2 compared to the indirect calorimetry measurements that we also performed, much more for the mice on a high-fat diet than for low-fat. We hypothesize an extra loss or exchange mechanism with a high fractionation for 2H to explain this difference.


Subject(s)
Carbon Dioxide , Water , Animals , Deuterium/analysis , Energy Metabolism , Mice , Oxygen Isotopes/analysis , Reproducibility of Results
8.
Rapid Commun Mass Spectrom ; 36(15): e8864, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-32558968

ABSTRACT

The present Table of Standard Atomic Weights (TSAW) of the elements is perhaps one of the most familiar data sets in science. Unlike most parameters in physical science whose values and uncertainties are evaluated using the "Guide to the Expression of Uncertainty in Measurement" (GUM), the majority of standard atomic-weight values and their uncertainties are consensus values, not GUM-evaluated values. The Commission on Isotopic Abundances and Atomic Weights of the International Union of Pure and Applied Chemistry (IUPAC) regularly evaluates the literature for new isotopic-abundance measurements that can lead to revised standard atomic-weight values, Ar °(E) for element E. The Commission strives to provide utmost clarity in products it disseminates, namely the TSAW and the Table of Isotopic Compositions of the Elements (TICE). In 2016, the Commission recognized that a guideline recommending the expression of uncertainty listed in parentheses following the standard atomic-weight value, for example, Ar °(Se) = 78.971(8), did not agree with the GUM, which suggests that this parenthetic notation be reserved to express standard uncertainty, not the expanded uncertainty used in the TSAW and TICE. In 2017, to eliminate this noncompliance with the GUM, a new format was adopted in which the uncertainty value is specified by the "±" symbol, for example, Ar °(Se) = 78.971 ± 0.008. To clarify the definition of uncertainty, a new footnote has been added to the TSAW. This footnote emphasizes that an atomic-weight uncertainty is a consensus (decisional) uncertainty. Not only has the Commission shielded users of the TSAW and TICE from unreliable measurements that appear in the literature as a result of unduly small uncertainties, but the aim of IUPAC has been fulfilled by which any scientist, taking any natural sample from commerce or research, can expect the sample atomic weight to lie within Ar °(E) ± its uncertainty almost all of the time.


Subject(s)
Consensus , Uncertainty
9.
Sci Total Environ ; 810: 151284, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34740647

ABSTRACT

Carbon isotope signatures are used to gain insight into sources and atmospheric processing of carbonaceous aerosols. Since elemental carbon (EC) is chemically stable, it is possible to apportion the main sources of EC (C3/C4 plant burning, coal combustion, and traffic emissions) using a dual 14C-13C isotope approach. The dual-isotope source apportionment crucially relies on accurate knowledge of 13C source signatures, which are seldom measured for EC. In this work, we present 13C signatures of organic carbon (OC) and EC for relevant sources in China. EC was isolated for 13C analysis based on the OC/EC split point of a thermal-optical method (EUSAAR_2 protocol). A series of sensitivity studies were conducted to investigate the EC separation and the relationship of the thermal-optical method to other EC isolation methods. Our results show that, first, the 13C signatures of raw materials and EC related to traffic emissions can be separated into three groups according to geographical location. Second, the 13C signature of OC emitted by the flaming combustion of C4 plants is strongly depleted in 13C compared to the source materials, and therefore EC is a better tracer for this source than total carbon (TC). A comprehensive literature review of 13C source signatures (of raw materials, of TC, and of EC isolated using a variety of thermal methods) was conducted. Accordingly, we recommend composite 13C source signatures of EC with uncertainties and detailed application conditions. Using these source signatures of EC in an example dual-isotope source apportionment study shows an improvement in precision. In addition, 13C signatures of OC were measured at three different desorption temperatures roughly corresponding to semi-volatile, low-volatile, and non-volatile OC fractions. Each source category shows a characteristic trend of 13C signatures with desorption temperature, which is likely related to different OC formation processes during combustion.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
10.
Sci Total Environ ; 804: 150031, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34509852

ABSTRACT

We describe and thoroughly evaluate a method for 13C analysis in different fractions of carbonaceous aerosols, especially elemental carbon (EC). This method combines a Sunset thermal-optical analyzer and an isotope ratio mass spectrometer (IRMS) via a custom-built automated separation, purification, and injection system. Organic carbon (OC), EC, and other specific fractions from aerosol filter samples can be separated and analyzed automatically for 13C based on thermal-optical protocols (EUSAAR_2 in this study) at sub-µgC levels. The main challenges in isolating EC for 13C analysis are the possible artifacts during OC/EC separation, including the premature loss of EC and the formation of pyrolyzed OC (pOC) that is difficult to separate from EC. Since those artifacts can be accompanied with isotope fractionation, their influence on the stable isotopic composition of EC was comprehensively investigated with various test compounds. The results show that the thermal-optical method is relatively successful in OC/EC separation for 13C analysis. The method was further tested on real aerosols samples. For biomass-burning source samples, (partial) inclusion of pOC into EC has negligible influence on the 13C signature of EC. However, for ambient samples, the influence of pOC on the 13C signature of EC can be significant, if it is not well separated from EC, which is true for many current methods for measuring 13C on EC. A case study in Xi'an, China, where pOC is enriched in 13C compared to EC, shows that this can lead to an overestimate of coal and an underestimate of traffic emissions in isotope-based source apportionment.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
11.
Rapid Commun Mass Spectrom ; 35(4): e9006, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33201519

ABSTRACT

RATIONALE: The stable carbon isotopic (δ13 C) reference material (RM) LSVEC Li2 CO3 has been found to be unsuitable for δ13 C standardization work because its δ13 C value increases with exposure to atmospheric CO2 . A new CaCO3 RM, USGS44, has been prepared to alleviate this situation. METHODS: USGS44 was prepared from 8 kg of Merck high-purity CaCO3 . Two sets of δ13 C values of USGS44 were determined. The first set of values was determined by online combustion, continuous-flow (CF) isotope-ratio mass spectrometry (IRMS) of NBS 19 CaCO3 (δ13 CVPDB = +1.95 milliurey (mUr) exactly, where mUr = 0.001 = 1‰), and LSVEC Li2 CO3 (δ13 CVPDB = -46.6 mUr exactly), and normalized to the two-anchor δ13 CVPDB-LSVEC isotope-delta scale. The second set of values was obtained by dual-inlet (DI)-IRMS of CO2 evolved by reaction of H3 PO4 with carbonates, corrected for cross contamination, and normalized to the single-anchor δ13 CVPDB scale. RESULTS: USGS44 is stable and isotopically homogeneous to within 0.02 mUr in 100-µg amounts. It has a δ13 CVPDB-LSVEC value of -42.21 ± 0.05 mUr. Single-anchor δ13 CVPDB values of -42.08 ± 0.01 and -41.99 ± 0.02 mUr were determined by DI-IRMS with corrections for cross contamination. CONCLUSIONS: The new high-purity, well-homogenized calcium carbonate isotopic reference material USGS44 is stable and has a δ13 CVPDB-LSVEC value of -42.21 ± 0.05 mUr for both EA/IRMS and DI-IRMS measurements. As a carbonate relatively depleted in 13 C, it is intended for daily use as a secondary isotopic reference material to normalize stable carbon isotope delta measurements to the δ13 CVPDB-LSVEC scale. It is useful in quantifying drift with time, determining mass-dependent isotopic fractionation (linearity correction), and adjusting isotope-ratio-scale contraction. Due to its fine grain size (smaller than 63 µm), it is not suitable as a δ18 O reference material. A δ13 CVPDB-LSVEC value of -29.99 ± 0.05 mUr was determined for NBS 22 oil.

12.
J Exp Biol ; 222(Pt 14)2019 07 19.
Article in English | MEDLINE | ID: mdl-31278130

ABSTRACT

Reproduction is energetically expensive and to obtain sufficient energy, animals can either alter their metabolic system over time to increase energy intake (increased-intake hypothesis) or reallocate energy from maintenance processes (compensation hypothesis). The first hypothesis predicts a positive relationship between basal metabolic rate (BMR) and energy expenditure (DEE) because of the higher energy demands of the metabolic system at rest. The second hypothesis predicts a trade-off between different body functions, with a reduction of the BMR as a way to compensate for increased daytime energetic expenditure. We experimentally manipulated the workload of wild pied flycatchers by adding or removing chicks when chicks were 2 and 11 days old. We then measured the feeding frequency (FF), DEE and BMR at day 11, allowing us to assess both short- and long-term effects of increased workload. The manipulation at day 2 caused an increase in FF when broods were enlarged, but no response in DEE or BMR, while the manipulation at day 11 caused an increase in FF, no change in DEE and a decrease in BMR in birds with more chicks. Our results suggest that pied flycatchers adjust their workload but that this does not lead to a higher BMR at night (no support for the increased-intake hypothesis). In the short term, we found that birds reallocate energy with a consequent reduction of BMR (evidence for the compensation hypothesis). Birds thus resort to short-term strategies to increase energy expenditure, which could explain why energy expenditure and hard work are not always correlated in birds.


Subject(s)
Energy Intake , Energy Metabolism , Reproduction/physiology , Songbirds/physiology , Animals , Basal Metabolism , Female , Male
13.
Isotopes Environ Health Stud ; 54(3): 304-311, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29448822

ABSTRACT

The stable isotopes of water are extensively used as tracers in many fields of research. For this use, it is essential to know the isotope fractionation factors connected to various processes, the most important of which being phase changes. Many experimental studies have been performed on phase change fractionation over the last decades. Whereas liquid-vapour fractionation measurements are relatively straightforward, vapour-solid and liquid-solid fractionation measurements are more complicated, as maintaining equilibrium conditions when a solid is involved is difficult. In this work, we determine the ice-liquid isotope fractionation factors in an indirect way, by applying the Van't Hoff equation. This equation describes the relationship of the fractionation factors with isotope-dependent temperature changes. We apply it to the recently experimentally determined isotope dependences of the triple point temperature of water [Faghihi V, Peruzzi A, Aerts-Bijma AT, et al. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance. Metrologia. 2015;52:819-826; Faghihi V, Kozicki M, Aerts-Bijma AT, et al. Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances. Metrologia. 2015;52:827-834]. This results in new values for the 2H (deuterium) and 18O fractionation factors for the liquid-solid phase change of water, which agree well with existing, direct experimental data [Lehmann M, Siegenthaler U. Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. J Glaciol. 1991;37:23-26]. For 2H, the uncertainty is improved by a factor of 3, whereas for 18O the uncertainty is similar. Our final results are αS-L (2H/1H) = 1.02093(13), and αS-L (18O/16O) = 1.002909(25), where the latter is the weighted average of the previous experimental study and this work.


Subject(s)
Deuterium/analysis , Ice/analysis , Oxygen Isotopes/analysis , Water/analysis , Chemical Fractionation
14.
Proc Natl Acad Sci U S A ; 114(39): 10361-10366, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28893986

ABSTRACT

A decrease in the 13C/12C ratio of atmospheric CO2 has been documented by direct observations since 1978 and from ice core measurements since the industrial revolution. This decrease, known as the 13C-Suess effect, is driven primarily by the input of fossil fuel-derived CO2 but is also sensitive to land and ocean carbon cycling and uptake. Using updated records, we show that no plausible combination of sources and sinks of CO2 from fossil fuel, land, and oceans can explain the observed 13C-Suess effect unless an increase has occurred in the 13C/12C isotopic discrimination of land photosynthesis. A trend toward greater discrimination under higher CO2 levels is broadly consistent with tree ring studies over the past century, with field and chamber experiments, and with geological records of C3 plants at times of altered atmospheric CO2, but increasing discrimination has not previously been included in studies of long-term atmospheric 13C/12C measurements. We further show that the inferred discrimination increase of 0.014 ± 0.007‰ ppm-1 is largely explained by photorespiratory and mesophyll effects. This result implies that, at the global scale, land plants have regulated their stomatal conductance so as to allow the CO2 partial pressure within stomatal cavities and their intrinsic water use efficiency to increase in nearly constant proportion to the rise in atmospheric CO2 concentration.


Subject(s)
Atmosphere/analysis , Carbon Dioxide/analysis , Climate Change , Plants/metabolism , Water/metabolism , Carbon Cycle/physiology , Carbon Isotopes/analysis , Fossil Fuels/analysis , Photosynthesis/physiology
16.
Anal Chem ; 88(8): 4294-302, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26974360

ABSTRACT

An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ(2)H(VSMOW-SLAP) values from -210.8 to +397.0 mUr or ‰, for δ(13)C(VPDB-LSVEC) from -40.81 to +0.49 mUr and for δ(15)N(Air) from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a (2)H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ(2)H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain (13)C and carbon-bound organic (2)H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.

17.
Rapid Commun Mass Spectrom ; 30(1): 143-50, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26661981

ABSTRACT

RATIONALE: The doubly labelled water (DLW) method is a stable isotopic technique for measuring total energy expenditure (TEE). Saliva is the easiest sampling fluid for assessing isotopic enrichments, but blood is considered superior because of its rapid exchange with body water. Therefore, we compared a large range of isotopic enrichments in saliva and blood, and related TEE in subjects with their ad libitum total energy intake (TEI). The relevance of these parameters to body weight and fat change over an 8-day interval was also assessed. METHODS: Thirty subjects underwent DLW analysis over either 8 or 14 days, during which time initial and final blood and saliva enrichments were compared. TEI was assessed by dieticians over the 8-day period only. Isotope ratio mass spectrometry was used for the measurement of δ(2)H and δ(18)O values. RESULTS: No discrepancies were observed between sampling fluids over a wide range of enrichments. During the 8-day period, average TEI exceeded TEE by ~5% or less. Using saliva as sampling fluid, TEI and TEI-TEE, but not TEE, were positively correlated to body weight change. TEI-TEE and physical activity EE (AEE), but not TEI, correlated, respectively, positively and negatively to changes in fat mass. CONCLUSIONS: The DLW method in humans can be reliably applied using saliva as sampling fluid. TEI-TEE as well as AEE contributes significantly to changes in fat mass over an 8-day period.


Subject(s)
Deuterium Oxide/analysis , Energy Metabolism/physiology , Saliva/chemistry , Adult , Deuterium/analysis , Humans , Male , Mass Spectrometry , Oxygen Isotopes/analysis
18.
PLoS One ; 10(9): e0134433, 2015.
Article in English | MEDLINE | ID: mdl-26376193

ABSTRACT

Many migrating birds undertake extraordinary long flights. How birds are able to perform such endurance flights of over 100-hour durations is still poorly understood. We examined energy expenditure and physiological changes in Northern Bald Ibis Geronticus eremite during natural flights using birds trained to follow an ultra-light aircraft. Because these birds were tame, with foster parents, we were able to bleed them immediately prior to and after each flight. Flight duration was experimentally designed ranging between one and almost four hours continuous flights. Energy expenditure during flight was estimated using doubly-labelled-water while physiological properties were assessed through blood chemistry including plasma metabolites, enzymes, electrolytes, blood gases, and reactive oxygen compounds. Instantaneous energy expenditure decreased with flight duration, and the birds appeared to balance aerobic and anaerobic metabolism, using fat, carbohydrate and protein as fuel. This made flight both economic and tolerable. The observed effects resemble classical exercise adaptations that can limit duration of exercise while reducing energetic output. There were also in-flight benefits that enable power output variation from cruising to manoeuvring. These adaptations share characteristics with physiological processes that have facilitated other athletic feats in nature and might enable the extraordinary long flights of migratory birds as well.


Subject(s)
Animal Migration , Birds/metabolism , Energy Metabolism , Flight, Animal , Adaptation, Physiological , Adipose Tissue/metabolism , Anaerobiosis , Animals , Birds/blood , Birds/physiology , Blood Gas Analysis , Electrolytes/blood , Glycogen/metabolism , Reactive Oxygen Species/metabolism
19.
Anal Chem ; 87(17): 9025-32, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26252648

ABSTRACT

IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

SELECTION OF CITATIONS
SEARCH DETAIL
...