Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Invest Ophthalmol Vis Sci ; 65(8): 5, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958971

ABSTRACT

Purpose: The purpose of this study was to investigate the presence of sex-steroid receptors in human choroidal tissue across different ages and sex, aiming to better understand the pronounced sex difference in central serous chorioretinopathy (CSC) occurrence. Methods: Paraffin-embedded enucleated eyes of 14 premenopausal women, 15 postmenopausal women, 10 young men (<45 years), and 10 older men (>60 years) were used. A clinically certified immunostaining was performed to detect the presence of the androgen receptor (AR), progesterone receptor (PR; isoform A and B), and estrogen receptor (ERα). The stained slides were scored in a blinded manner for positive endothelial cells and stromal cells in consecutive sections of the same choroidal region. Results: Our analysis revealed the presence of AR, PR, and ERα in endothelial cells and stromal cells of choroidal tissue. The mean proportion of AR-positive endothelial cells was higher in young men (46% ± 0.15) compared to aged-matched women (29% ± 0.12; P < 0.05, 95% confidence interval [CI]). Premenopausal women showed markedly lower mean proportion of ERα (5% ± 0.02) and PR-positive endothelial cells (2% ± 0.01) compared to postmenopausal women (15% ± 0.07 and 19% ± 0.13; both P < 0.05, 95% CI), young men (13% ± 0.04 and 21% ± 0.10; both P < 0.05, 95% CI), and older men (18% ± 0.09 and 27% ± 0.14; both P < 0.05, 95% CI). Mean PR-positive stromal cells were also less present in premenopausal women (12% ± 0.07) than in other groups. Conclusions: The number of sex-steroid receptors in the choroidal tissue differs between men and women across different ages, which aligns with the prevalence patterns of CSC in men and postmenopausal women.


Subject(s)
Central Serous Chorioretinopathy , Choroid , Receptors, Androgen , Receptors, Progesterone , Humans , Female , Male , Choroid/metabolism , Choroid/pathology , Middle Aged , Adult , Central Serous Chorioretinopathy/metabolism , Central Serous Chorioretinopathy/epidemiology , Central Serous Chorioretinopathy/diagnosis , Receptors, Progesterone/metabolism , Receptors, Androgen/metabolism , Aged , Sex Factors , Prevalence , Estrogen Receptor alpha/metabolism
3.
Case Rep Psychiatry ; 2024: 4768647, 2024.
Article in English | MEDLINE | ID: mdl-38706512

ABSTRACT

Despite the availability of various treatment approaches for patients with posttraumatic stress disorder (PTSD), some patients do not respond to these therapies, and novel treatment approaches are needed. This study investigated the efficacy of mifepristone, a glucocorticoid receptor antagonist, in treatment-resistant PTSD patients. Three patients with PTSD who were resistant to standard psychological and pharmacological treatments were prescribed mifepristone (600-1,200 mg/day) for 1 week. A baseline-controlled single-case design was used, involving a 2-week baseline phase (no intervention), a 1-week intervention phase (mifepristone), and a 2-week postintervention phase. The primary outcome measure, self-reported PTSD symptom severity (PCL-5), was assessed daily, with participants providing their own control condition. Two of the three patients experienced a significant reduction in PTSD symptom severity after the intervention phase and no longer met the diagnostic criteria for PTSD. These positive results were maintained during long-term follow-up. These findings support the potential effectiveness of mifepristone in the treatment of patients with treatment-resistant PTSD. However, our findings must be interpreted with caution, and further studies with larger sample sizes and more rigorous designs are necessary to confirm the promising results.

4.
J Pain ; : 104496, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38342190

ABSTRACT

We conducted an explorative prospective cohort study with 6 months follow-up to 1) identify different pain and disability trajectories following an episode of acute neck pain, and 2) assess whether neuroimmune/endocrine, psychological, behavioral, nociceptive processing, clinical outcome, demographic and management-related factors differ between these trajectories. Fifty people with acute neck pain (ie, within 2 weeks of onset) were included. At baseline, and at 2, 4, 6, 12, and 26 weeks follow-up, various neuroimmune/endocrine (eg, inflammatory cytokines and endocrine factors), psychological (eg, stress symptoms), behavioral (eg, sleep disturbances), nociceptive processing (eg, condition pain modulation), clinical outcome (eg, trauma), demographic factors (eg, age), and management-related factors (eg, treatment received) were assessed. Latent class models were performed to identify outcome trajectories for neck pain and disability. Linear mixed models or the Pearson chi-square test were used to evaluate differences in these factors between the trajectories at baseline and at each follow-up assessment and over the entire 6 months period. For pain, 3 trajectories were identified. The majority of patients were assigned to the "Moderate pain - Favourable recovery" trajectory (n = 25; 50%) with smaller proportions assigned to the "Severe pain - Favourable recovery" (n = 16; 32%) and the "Severe pain - Unfavourable recovery" (n = 9; 18%) trajectories. For disability, 2 trajectories were identified: "Mild disability - Favourable recovery" (n = 43; 82%) and "Severe disability - Unfavourable recovery" (n = 7; 18%). Ongoing systemic inflammation (increased high-sensitive C-reactive protein), sleep disturbances, and elevated psychological factors (such as depression, stress and anxiety symptoms) were mainly present in the unfavorable outcome trajectories compared to the favorable outcome trajectories. PERSPECTIVE: Using exploratory analyses, different recovery trajectories for acute neck pain were identified based on disability and pain intensity. These trajectories were influenced by systemic inflammation, sleep disturbances, and psychological factors.

5.
Exp Neurol ; 374: 114675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38216109

ABSTRACT

Huntington's Disease (HD) is a progressive neurodegenerative disease caused by a mutation in the huntingtin gene. The mutation leads to a toxic gain of function of the mutant huntingtin (mHtt) protein resulting in cellular malfunction, aberrant huntingtin aggregation and eventually neuronal cell death. Patients with HD show impaired motor functions and cognitive decline. Elevated levels of glucocorticoids have been found in HD patients and in HD mouse models, and there is a positive correlation between increased glucocorticoid levels and the progression of HD. Therefore, antagonism of the glucocorticoid receptor (GR) may be an interesting strategy for the treatment of HD. In this study, we evaluated the efficacy of the selective GR antagonist CORT113176 in the commonly used R6/2 mouse model. In male mice, CORT113176 treatment significantly delayed the loss of grip strength, the development of hindlimb clasping, gait abnormalities, and the occurrence of epileptic seizures. CORT113176 treatment delayed loss of DARPP-32 immunoreactivity in the dorsolateral striatum. It also restored HD-related parameters including astrocyte markers in both the dorsolateral striatum and the hippocampus, and microglia markers in the hippocampus. This suggests that CORT113176 has both cell-type and brain region-specific effects. CORT113176 delayed the formation of mHtt aggregates in the striatum and the hippocampus. In female mice, we did not observe major effects of CORT113176 treatment on HD-related symptoms, with the exception of the anti-epileptic effects. We conclude that CORT113176 effectively delays several key symptoms related to the HD phenotype in male R6/2 mice and believe that GR antagonism may be a possible treatment option.


Subject(s)
Huntington Disease , Isoquinolines , Neurodegenerative Diseases , Pyrazoles , Animals , Female , Humans , Male , Mice , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/complications , Huntington Disease/drug therapy , Huntington Disease/genetics , Receptors, Glucocorticoid
6.
Mol Neurobiol ; 61(1): 1-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37566177

ABSTRACT

Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1ß and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1ß, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.


Subject(s)
HMGB1 Protein , Isoquinolines , Neurodegenerative Diseases , Pyrazoles , Male , Mice , Humans , Animals , Receptors, Glucocorticoid/metabolism , Corticosterone , HMGB1 Protein/metabolism , Neuroinflammatory Diseases , Gliosis/metabolism , Toll-Like Receptor 4/metabolism , Glucocorticoids/pharmacology , Spinal Cord/metabolism , Neurodegenerative Diseases/metabolism
7.
Nat Commun ; 14(1): 8177, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071198

ABSTRACT

Counteracting the overactivation of glucocorticoid receptors (GR) is an important therapeutic goal in stress-related psychiatry and beyond. The only clinically approved GR antagonist lacks selectivity and induces unwanted side effects. To complement existing tools of small-molecule-based inhibitors, we present a highly potent, catalytically-driven GR degrader, KH-103, based on proteolysis-targeting chimera technology. This selective degrader enables immediate and reversible GR depletion that is independent of genetic manipulation and circumvents transcriptional adaptations to inhibition. KH-103 achieves passive inhibition, preventing agonistic induction of gene expression, and significantly averts the GR's genomic effects compared to two currently available inhibitors. Application in primary-neuron cultures revealed the dependency of a glucocorticoid-induced increase in spontaneous calcium activity on GR. Finally, we present a proof of concept for application in vivo. KH-103 opens opportunities for a more lucid interpretation of GR functions with translational potential.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Glucocorticoids/pharmacology , Receptors, Glucocorticoid/metabolism
8.
Article in English | MEDLINE | ID: mdl-38038629

ABSTRACT

BACKGROUND: Synthetic glucocorticoids are widely used among patients suffering from a wide range of diseases. Glucocorticoids are very efficacious, but can be accompanied by neuropsychiatric adverse effects. This systematic review and meta-analysis assesses and quantifies the proportion of different neuropsychiatric adverse effects in patients using synthetic glucocorticoids. METHODS: Six electronic databases were searched to identify potentially relevant studies. Randomized controlled trials, cohort and cross-sectional studies assessing psychiatric side effects of glucocorticoids measured with validated questionnaires were eligible. Risk of bias was assessed with RoB 2, ROBINS-I, and AXIS appraisal tool. For proportions of neuropsychiatric outcomes, we pooled proportions, and when possible, differences in questionnaire scores between glucocorticoid users and non-users were expressed as standardized mean differences (SMD). Data were pooled in a random-effects logistic regression model. RESULTS: We included 49 studies with heterogeneity in study populations, type, dose, and duration of glucocorticoids. For glucocorticoid users, meta-analysis showed a proportion of 22% for depression (95%CI 14%-33%), 11% for mania (95%CI 2%-46%), 8% for anxiety (95%CI 2%-25%), 16% for delirium (95%CI 6%-36%), and 52% for behavioural changes (95%CI 42%-61%). Questionnaire scores for depression (SMD of 0.80 (95%CI 0.35-1.26)), and mania (0.78 (95%CI 0.14-1.42)) were higher than in controls, indicating more depressive and manic symptoms following glucocorticoid use. CONCLUSIONS: The heterogeneity of glucocorticoid use is reflected in the available studies. Despite this heterogeneity, the proportion of neuropsychiatric adverse effects in glucocorticoid users is high. The most substantial associations with glucocorticoid use were found for depression and mania. Upon starting glucocorticoid treatment, awareness of possible psychiatric side effects is essential. More structured studies on incidence and potential pathways of neuropsychiatric side effects of prescribed glucocorticoids are clearly needed.

9.
Stress ; 26(1): 2275210, 2023 11.
Article in English | MEDLINE | ID: mdl-37874158

ABSTRACT

Glucocorticoid hormones are essential for health, but overexposure may lead to many detrimental effects, including metabolic, psychiatric, and bone disease. These effects may not only be due to increased overall exposure to glucocorticoids, but also to elevated hormone levels at the time of the physiological circadian trough of glucocorticoid levels. The late Mary Dallman developed a model that allows the differentiation between the effects of overall 24-hour glucocorticoid overexposure and the effects of a lack of circadian rhythmicity. For this, she continuously treated rats with a low dose of corticosterone (or "B"), which leads to a constant hormone level, without 24-hour overexposure using subcutaneously implanted pellets. The data from this "B-flat" model suggest that even modest elevations of glucocorticoid signaling during the time of the normal circadian trough of hormone secretion are a substantial contributor to the negative effects of glucocorticoids on health.


Subject(s)
Glucocorticoids , Stress, Psychological , Female , Rats , Animals , Glucocorticoids/metabolism , Corticosterone/metabolism , Signal Transduction , Circadian Rhythm/physiology , Receptors, Glucocorticoid/metabolism , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism
10.
Ann Clin Transl Neurol ; 10(12): 2324-2333, 2023 12.
Article in English | MEDLINE | ID: mdl-37822297

ABSTRACT

OBJECTIVE: Duchenne muscular dystrophy (DMD) is a neuromuscular disorder in which many patients also have neurobehavioral problems. Corticosteroids, the primary pharmacological treatment for DMD, have been shown to affect brain morphology in other conditions, but data in DMD are lacking. This study aimed to investigate the impact of two corticosteroid regimens on brain volumetrics in DMD using magnetic resonance imaging (MRI). METHODS: In a cross-sectional, two-center study, T1-weighted MRI scans were obtained from three age-matched groups (9-18 years): DMD patients treated daily with deflazacort (DMDd, n = 20, scan site: Leuven), DMD patients treated intermittently with prednisone (DMDi, n = 20, scan site: Leiden), and healthy controls (n = 40, both scan sites). FSL was used to perform voxel-based morphometry analyses and to calculate intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volumes. A MANCOVA was employed to compare global volumetrics between groups, with site as covariate. RESULTS: Both patient groups displayed regional differences in gray matter volumes compared to the control group. The DMDd group showed a wider extent of brain regions affected and a greater difference overall. This was substantiated by the global volume quantification: the DMDd group, but not the DMDi group, showed significant differences in gray matter, white matter, and cerebrospinal fluid volumes compared to the control group, after correction for intracranial volume. INTERPRETATION: Volumetric differences in the brain are considered part of the DMD phenotype. This study suggests an additional impact of corticosteroid treatment showing a contrast between pronounced alterations seen in patients receiving daily corticosteroid treatment and more subtle differences in those treated intermittently.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Child , Adolescent , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Cross-Sectional Studies , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Brain/diagnostic imaging , Brain/pathology , Prednisone/pharmacology , Prednisone/therapeutic use
11.
Psychoneuroendocrinology ; 158: 106394, 2023 12.
Article in English | MEDLINE | ID: mdl-37774658

ABSTRACT

Depression can be understood as a complex dynamic system where depressive symptoms interact with one another. Cortisol is suggested to play a major role in the pathophysiology of depression, but knowledge on the temporal interplay between cortisol and depressive symptoms is scarce. We aimed to analyze the temporal connectivity between salivary cortisol and momentary affective states in depressed individuals and controls. Thirty pair-matched depressed and non-depressed participants completed questionnaires on momentary positive (PA) and negative (NA) affect and collected saliva three times a day for 30 days. The association between cortisol and affect was analyzed by dynamic time warp (DTW) analyses. These analyses involved lag-1 backward to lag-1 forward undirected analyses and lag-0 and lag-1 forward directed analyses. Large inter- and intra-individual variability in the networks were found. At the group level, with undirected analysis PA and NA were connected in the networks in depressed individuals and in controls. Directed analyses indicated that increases in cortisol preceded specific NA items in controls, but tended to follow upon specific affect items increase in depressed individuals. To conclude, at group level, changes in cortisol levels in individuals diagnosed with a depression may be a result of changes in affect, rather than a cause.


Subject(s)
Depression , Hydrocortisone , Humans , Depression/psychology , Hydrocortisone/analysis , Emotions , Surveys and Questionnaires , Saliva/chemistry
12.
Eur J Pharmacol ; 957: 176012, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37634839

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a common condition that can progress to the more severe conditions like non-alcoholic steatohepatitis (NASH) for which limited effective therapeutic options are available. In this study, we set out to evaluate the novel glucocorticoid receptor modulator CORT125385, an analogue of the previously studied miricorilant but without mineralocorticoid receptor binding activity. Male and female mice that received high-fat diet and fructose water were treated with either vehicle, CORT125385 or mifepristone. We found that CORT125385 significantly lowered hepatic triglyceride levels in male mice, and hepatic triglyceride and cholesterol levels in female mice. Mifepristone treatment had no effect in male mice, but significantly lowered hepatic triglyceride and cholesterol levels in female mice. In reporter assays in vitro, CORT125385 showed weak partial agonism on the progesterone receptor (PR) at high doses, as well as PR antagonism at a potency 1000-fold lower than mifepristone. In vivo, CORT125385 treatment did not influence PR-responsive gene expression in the oviduct, while mifepristone treatment strongly influenced these genes in the oviduct, thus excluding in vivo PR cross-reactivity of CORT125385 at a therapeutically active dose. We conclude that CORT125385 is a promising glucocorticoid receptor modulator that effectively reduces liver steatosis in male and female mice without affecting other steroid receptors at doses that lower hepatic lipid content.


Subject(s)
Non-alcoholic Fatty Liver Disease , Receptors, Glucocorticoid , Female , Male , Animals , Mice , Mifepristone/pharmacology , Mifepristone/therapeutic use , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Cholesterol
13.
Biol Psychiatry ; 94(12): 948-958, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37330166

ABSTRACT

BACKGROUND: The ability to predict the disease course of individuals with major depressive disorder (MDD) is essential for optimal treatment planning. Here, we used a data-driven machine learning approach to assess the predictive value of different sets of biological data (whole-blood proteomics, lipid metabolomics, transcriptomics, genetics), both separately and added to clinical baseline variables, for the longitudinal prediction of 2-year remission status in MDD at the individual-subject level. METHODS: Prediction models were trained and cross-validated in a sample of 643 patients with current MDD (2-year remission n = 325) and subsequently tested for performance in 161 individuals with MDD (2-year remission n = 82). RESULTS: Proteomics data showed the best unimodal data predictions (area under the receiver operating characteristic curve = 0.68). Adding proteomic to clinical data at baseline significantly improved 2-year MDD remission predictions (area under the receiver operating characteristic curve = 0.63 vs. 0.78, p = .013), while the addition of other omics data to clinical data did not yield significantly improved model performance. Feature importance and enrichment analysis revealed that proteomic analytes were involved in inflammatory response and lipid metabolism, with fibrinogen levels showing the highest variable importance, followed by symptom severity. Machine learning models outperformed psychiatrists' ability to predict 2-year remission status (balanced accuracy = 71% vs. 55%). CONCLUSIONS: This study showed the added predictive value of combining proteomic data, but not other omics data, with clinical data for the prediction of 2-year remission status in MDD. Our results reveal a novel multimodal signature of 2-year MDD remission status that shows clinical potential for individual MDD disease course predictions from baseline measurements.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Follow-Up Studies , Depression , Proteomics , Disease Progression
14.
JMIR Res Protoc ; 12: e38087, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37335592

ABSTRACT

BACKGROUND: The hormone cortisol plays important roles in human circadian and stress physiology and is an interesting target for interventions. Cortisol varies not only in response to stress but also as part of a diurnal rhythm. It shows a particularly sharp increase immediately after awakening, the cortisol awakening response (CAR). Cortisol can be affected by medication, but it is less clear whether it can also be affected by learning. Animal studies have consistently shown that cortisol can be affected by pharmacological conditioning, but the results in humans have been mixed. Other studies have suggested that conditioning is also possible during sleep and that the diurnal rhythm can be conditioned, but these findings have not yet been applied to cortisol conditioning. OBJECTIVE: The objective of our study was to introduce a novel avenue for conditioning cortisol: by using the CAR as an unconditioned response and using scent conditioning while the participant is asleep. This study investigates an innovative way to study the effects of conditioning on cortisol and the diurnal rhythm, using a variety of devices and measures to make measurement possible at a distance and at unusual moments. METHODS: The study protocol takes 2 weeks and is performed from the participant's home. Measures in week 1 are taken to reflect the CAR and waking under baseline conditions. For the first 3 nights of week 2, participants are exposed to a scent from 30 minutes before awakening until their normal time of awakening to allow the scent to become associated with the CAR. On the final night, participants are forced to wake 4 hours earlier, when cortisol levels are normally low, and either the same (conditioned group) or a different (control group) scent is presented half an hour before this new time. This allows us to test whether cortisol levels are higher after the same scent is presented. The primary outcome is the CAR, assessed by saliva cortisol levels, 0, 15, 30, and 45 minutes after awakening. The secondary outcomes are heart rate variability, actigraphy measures taken during sleep, and self-reported mood after awakening. To perform manipulations and measurements, this study uses wearable devices, 2 smartphone apps, web-based questionnaires, and a programmed scent device. RESULTS: We completed data collection as of December 24, 2021. CONCLUSIONS: This study can provide new insights into learning effects on cortisol and the diurnal rhythm. If the procedure does affect the CAR and associated measures, it also has potential clinical implications in the treatment of sleep and stress disorders. TRIAL REGISTRATION: Netherlands Trial Register NL58792.058.16; https://trialsearch.who.int/Trial2.aspx?TrialID=NL7791. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/38087.

15.
Psychosom Med ; 85(6): 551-560, 2023.
Article in English | MEDLINE | ID: mdl-37234022

ABSTRACT

OBJECTIVE: The objective of this study was to investigate whether placebo effect induced by pharmacological conditioning with intranasal insulin can affect glucose, insulin, C-peptide, hunger, and memory in patients with diabetes type 2 and healthy controls. METHODS: Placebo effect was induced by pharmacological conditioning. Thirty-two older patients (mean age = 68.3 years) with diabetes type 2 and age- and sex-matched thirty-two healthy older adults (mean age = 67.8 years) were randomly assigned to a conditioned or a control group. On day 1, conditioned group received six administrations of intranasal insulin with a conditioned stimulus (CS; smell of rosewood oil), whereas the control group received a placebo with the CS. On day 2, both groups received a placebo spray with the CS. Glucose, insulin, and C-peptide were repeatedly measured in blood. Hunger and memory were assessed with validated measures. RESULTS: Intranasal insulin stabilized dropping glucose levels in patients ( B = 0.03, SE = 0.02, p = .027) and healthy men ( B = 0.046, SE = 0.02, p = .021), and decreased C-peptide levels in healthy controls ( B = 0.01, SE = 0.001, p = .008). Conditioning also prevented the drop of glucose levels but only in men (both healthy and patients; B = 0.001, SE = 0.0003, p = .024). Conditioning significantly decreased hunger in healthy participants ( B = 0.31, SE = 0.09, p < .001). No effects were found on other measures. CONCLUSIONS: Placebo effect induced by conditioning with intranasal insulin modifies blood glucose levels and decreases hunger in older adults, but its effects depend on health status and sex. Insulin conditioning might be beneficial for groups suffering from intensive hunger but seems not be particularly suitable for blood glucose reduction. TRIAL REGISTRATION: Netherlands Trial Register, NL7783 ( https://www.trialregister.nl/trial/7783 ).


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Male , Humans , Aged , Blood Glucose , Placebo Effect , C-Peptide/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucose/pharmacology , Glucose/therapeutic use , Health Status , Double-Blind Method , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
16.
Lab Anim ; 57(5): 541-551, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37066741

ABSTRACT

The collagen antibody-induced arthritis (CAIA) model is highly effective in inducing arthritis, making it an attractive model for screening therapeutic compounds such as glucocorticoids (GCs). The severity of discomfort in this model makes it desirable to administer analgesics, but it is a prerequisite that these do not interfere with the model or tested therapeutics. In the present study, we studied the effect of 1 mg/mL tramadol and 3.5 mg/mL paracetamol (TP) on CAIA in male BALB/cAnNCrl mice and the possible interference of TP analgesia with the activity of the GC drug prednisolone (Pred). Our results showed that TP abolished the Pred-induced amelioration of CAIA, as well as several other Pred-induced effects, such as the reduction in thymus weight and the increase in insulin level. This most likely results from the effects of TP on the hepatic metabolism of this drug, since it strongly increased the Cyp3a11 expression in the liver. Altogether, we conclude that TP analgesia is not suitable for the CAIA model in male BALB/cAnNCrl mice, in particular when evaluating the effects of GCs such as Pred.


Subject(s)
Arthritis, Experimental , Tramadol , Male , Animals , Mice , Prednisolone/adverse effects , Acetaminophen/adverse effects , Tramadol/pharmacology , Tramadol/therapeutic use , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Collagen/adverse effects
17.
Front Neuroendocrinol ; 69: 101065, 2023 04.
Article in English | MEDLINE | ID: mdl-37001566

ABSTRACT

The two-hit stress model predicts that exposure to stress at two different time-points in life may increase or decrease the risk of developing stress-related disorders later in life. Most studies based on the two-hit stress model have investigated early postnatal stress as the first hit with adult stress as the second hit. Adolescence, however, represents another highly sensitive developmental window during which exposure to stressful events may affect programming outcomes following exposure to stress in adulthood. Here, we discuss the programming effects of different types of stressors (social and nonsocial) occurring during adolescence (first hit) and how such stressors affect the responsiveness toward an additional stressor occurring during adulthood (second hit) in rodents. We then provide a comprehensive overview of the potential mechanisms underlying interindividual and sex differences in the resilience/susceptibility to developing stress-related disorders later in life when stress is experienced in two different life stages.


Subject(s)
Stress, Psychological , Animals , Female , Male , Stress, Psychological/complications , Rodentia , Sex Factors
18.
Neurobiol Stress ; 22: 100514, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36660181

ABSTRACT

The characteristic endogenous circadian rhythm of plasma glucocorticoid concentrations is made up from an underlying ultradian pulsatile secretory pattern. Recent evidence has indicated that this ultradian cortisol pulsatility is crucial for normal emotional response in man. In this study, we investigate the anatomical transcriptional and cell type signature of brain regions sensitive to a loss of ultradian rhythmicity in the context of emotional processing. We combine human cell type and transcriptomic atlas data of high spatial resolution with functional magnetic resonance imaging (fMRI) data. We show that the loss of cortisol ultradian rhythm alters emotional processing response in cortical brain areas that are characterized by transcriptional and cellular profiles of GABAergic function. We find that two previously identified key components of rapid non-genomic GC signaling - the ANXA1 gene and retrograde endocannabinoid signaling - show most significant differential expression (q = 3.99e-10) and enrichment (fold enrichment = 5.56, q = 9.09e-4). Our results further indicate that specific cell types, including a specific NPY-expressing GABAergic neuronal cell type, and specific G protein signaling cascades underly the cerebral effects of a loss of ultradian cortisol rhythm. Our results provide a biological mechanistic underpinning of our fMRI findings, indicating specific cell types and cascades as a target for manipulation in future experimental studies.

19.
J Endocrinol ; 256(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36445262

ABSTRACT

Glucocorticoid stress hormones are produced in response to hypothalamic-pituitary-adrenal (HPA) axis activation. Glucocorticoids are essential for physiology and exert numerous actions via binding to the glucocorticoid receptor (GR). Relacorilant is a highly selective GR antagonist currently undergoing a phase 3 clinical evaluation for the treatment of endogenous Cushing's syndrome. It was found that increases in serum adrenocorticotropic hormone (ACTH) and cortisol concentrations after relacorilant treatment were substantially less than the increases typically observed with mifepristone, but it is unclear what underlies these differences. In this study, we set out to further preclinically characterize relacorilant in comparison to the classical but non-selective GR antagonist mifepristone. In human HEK-293 cells, relacorilant potently antagonized dexamethasone- and cortisol-induced GR signaling, and in human peripheral blood mononuclear cells, relacorilant largely prevented the anti-inflammatory effects of dexamethasone. In mice, relacorilant treatment prevented hyperinsulinemia and immunosuppression caused by increased corticosterone exposure. Relacorilant treatment reduced the expression of classical GR target genes in peripheral tissues but not in the brain. In mice, relacorilant induced a modest disinhibition of the HPA axis as compared to mifepristone. In line with this, in mouse pituitary cells, relacorilant was generally less potent than mifepristone in regulating Pomc mRNA and ACTH release. This contrast between relacorilant and mifepristone is possibly due to the distinct transcriptional coregulator recruitment by the GR. In conclusion, relacorilant is thus an efficacious peripheral GR antagonist in mice with only modest disinhibition of the HPA axis, and the distinct properties of relacorilant endorse the potential of selective GR antagonist treatment for endogenous Cushing's syndrome.


Subject(s)
Cushing Syndrome , Mifepristone , Humans , Mice , Animals , Mifepristone/pharmacology , Hydrocortisone/metabolism , Receptors, Glucocorticoid/metabolism , Hypothalamo-Hypophyseal System/metabolism , Leukocytes, Mononuclear , HEK293 Cells , Pituitary-Adrenal System/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Adrenocorticotropic Hormone/metabolism , Dexamethasone/pharmacology
20.
J Neuroendocrinol ; 35(2): e13213, 2023 02.
Article in English | MEDLINE | ID: mdl-36426812

ABSTRACT

Glucocorticoids are powerful modulators of brain function. They act via mineralocorticoid and glucocorticoid receptors (MR and GR). These are best understood as transcription factors. Although many glucocorticoid effects depend on the modulation of gene transcription, it is a major challenge to link gene expression to function given the large-scale, apparently pleiotropic genomic responses. The extensive sets of MR and GR target genes are highly specific per cell type, and the brain contains many different (neuronal and non-neuronal) cell types. Next to the set "trait" of cellular context, the "state" of other active signaling pathways will affect MR and GR transcriptional activity. Here, we discuss receptor specificity and contextual factors that determine the transcriptional outcome of MR/GR signaling, experimental possibilities offered by single-cell transcriptomics approaches, and reflect on how to make sense of lists of target genes in relation to understanding the functional effects of steroid receptor activation.


Subject(s)
Glucocorticoids , Receptors, Steroid , Glucocorticoids/metabolism , Receptors, Mineralocorticoid/metabolism , Receptors, Glucocorticoid/metabolism , Brain/metabolism , Receptors, Steroid/metabolism , Signal Transduction , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...