Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Neuropsychopharmacol ; 79: 7-16, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000196

ABSTRACT

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, but chances for remission largely decrease with each failed treatment attempt. It is therefore desirable to assign a given patient to the most promising individual treatment option as early as possible. We used a polygenic score (PGS) informed electroencephalography (EEG) data-driven approach to identify potential predictors for MDD treatment outcome. Post-hoc we conducted exploratory analyses in order to understand the results in depth. First, an EEG independent component analysis produced 54 functional brain networks in a large heterogeneous cohort of psychiatric patients (n = 4,045; 5-84 yrs.). Next, the network that was associated to PGS for antidepressant-response (PRS-AR) in an independent sample (n = 722) was selected: an age-related posterior alpha network that explained >60 % of EEG variance, and was highly stable over recording time. Translational analyses were performed in two other independent datasets to examine if the network was predictive of psychopharmacotherapy (n = 535) and/or repetitive transcranial magnetic stimulation (rTMS) and concomitant psychotherapy (PT; n = 186) outcome. The network predicted remission to venlafaxine (p = 0.015), resulting in a normalized positive predicted value (nPPV) of 138 %, and rTMS + PT - but in opposite direction for women (p = 0.002) relative to men (p = 0.018) - yielding a nPPV of 131 %. Blinded out-of-sample validations for venlafaxine (n = 29) and rTMS + PT (n = 36) confirmed the findings for venlafaxine, while results for rTMS + PT could not be replicated. These data suggest the existence of a relatively stable EEG posterior alpha aging network related to PGS-AR that has potential as MDD treatment predictor.


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Male , Humans , Female , Venlafaxine Hydrochloride/therapeutic use , Transcranial Magnetic Stimulation/methods , Depressive Disorder, Major/drug therapy , Prefrontal Cortex/physiology , Antidepressive Agents/therapeutic use , Treatment Outcome , Aging
2.
Front Neurosci ; 17: 1176825, 2023.
Article in English | MEDLINE | ID: mdl-37781262

ABSTRACT

Introduction: Resting-state EEG (rsEEG) characteristics, such as functional connectivity and network topology, are studied as potential biomarkers in psychiatric research. However, the presence of psychopharmacological treatment in study participants poses a potential confounding factor in biomarker research. To address this concern, our study aims to explore the impact of both single and multi-class psychotropic treatments on aforementioned rsEEG characteristics in a psychiatric population. Methods: RsEEG was analyzed in a real-world cross-sectional sample of 900 hospital-admitted psychiatric patients. Patients were clustered into eight psychopharmacological groups: unmedicated, single-class treatment with antipsychotics (AP), antidepressants (AD) or benzodiazepines (BDZ), and multi-class combinations of these treatments. To assess the associations between psychotropic treatments and the macroscale rsEEG characteristics mentioned above, we employed a general linear model with post-hoc tests. Additionally, Spearman's rank correlation analyses were performed to explore potential dosage effects. Results: Compared to unmedicated patients, single-class use of AD was associated with lower functional connectivity in the delta band, while AP was associated with lower functional connectivity in both the delta and alpha bands. Single-class use of BDZ was associated with widespread rsEEG differences, including lower functional connectivity across frequency bands and a different network topology within the beta band relative to unmedicated patients. All of the multi-class groups showed associations with functional connectivity or topology measures, but effects were most pronounced for concomitant use of all three classes of psychotropics. Differences were not only observed in comparison with unmedicated patients, but were also evident in comparisons between single-class, multi-class, and single/multi-class groups. Importantly, multi-class associations with rsEEG characteristics were found even in the absence of single-class associations, suggesting potential cumulative or interaction effects of different classes of psychotropics. Dosage correlations were only found for antipsychotics. Conclusion: Our exploratory, cross-sectional study suggests small but significant associations between single and multi-class use of antidepressants, antipsychotics and benzodiazepines and macroscale rsEEG functional connectivity and network topology characteristics. These findings highlight the importance of considering the effects of specific psychotropics, as well as their interactions, when investigating rsEEG biomarkers in a medicated psychiatric population.

3.
Eur Neuropsychopharmacol ; 62: 49-60, 2022 09.
Article in English | MEDLINE | ID: mdl-35896057

ABSTRACT

The treatment of major depressive disorder (MDD) is hampered by low chances of treatment response in each treatment step, which is partly due to a lack of firmly established outcome-predictive biomarkers. Here, we hypothesize that polygenic-informed EEG signatures may help predict antidepressant treatment response. Using a polygenic-informed electroencephalography (EEG) data-driven, data-reduction approach, we identify a brain network in a large cohort (N=1,123), and discover it is sex-specifically (male patients, N=617) associated with polygenic risk score (PRS) of antidepressant response. Subsequently, we demonstrate in three independent datasets the utility of the network in predicting response to antidepressant medication (male, N=232) as well as repetitive transcranial magnetic stimulation (rTMS) and concurrent psychotherapy (male, N=95). This network significantly improves a treatment response prediction model with age and baseline severity data (area under the curve, AUC=0.623 for medicaton; AUC=0.719 for rTMS). A predictive model for MDD patients, aimed at increasing the likelihood of being a responder to antidepressants or rTMS and concurrent psychotherapy based on only this network, yields a positive predictive value (PPV) of 69% for medication and 77% for rTMS. Finally, blinded out-of-sample validation of the network as predictor for psychotherapy response in another independent dataset (male, N=50) results in a within-subsample response rate of 50% (improvement of 56%). Overall, the findings provide a first proof-of-concept of a combined genetic and neurophysiological approach in the search for clinically-relevant biomarkers in psychiatric disorders, and should encourage researchers to incorporate genetic information, such as PRS, in their search for clinically relevant neuroimaging biomarkers.


Subject(s)
Depressive Disorder, Major , Antidepressive Agents , Biomarkers , Electroencephalography , Humans , Male , Transcranial Magnetic Stimulation , Treatment Outcome
4.
Psychiatry Res ; 314: 114637, 2022 08.
Article in English | MEDLINE | ID: mdl-35649338

ABSTRACT

BACKGROUND: Attention deficits measured using event-related potentials (ERPs) have been frequently reported in several major psychiatric disorders, e.g. mood disorder (MD), psychotic disorder (PD) and substance use disorder (SUD). However, comparisons between these specific categories are lacking. Here we investigated if electrophysiological parameters of basic information processing are associated with the above-mentioned categories of psychiatric disorders, or instead were associated with general psychopathology. METHODS: 579 subjects with MD, PD or SUD and healthy controls (HC) were included. Participants were tested in a passive auditory and an active visual oddball paradigm to assess mismatch negativity (MMN), P3A and P3B amplitudes. Additionally, we examined associations between these measures and psychoactive medication treatments. RESULTS: All patients had significantly lower P3B amplitudes compared to healthy controls, while only SUD patients had lower P3A amplitudes than MD, PD and HC. PD patients also produced significantly less MMN than both MD and SUD patients. Additionally, we found significantly higher P3B amplitude in HC compared to patients without psychopharmacological treatment and patients treated with two or more psychoactive compounds (polypharmacy), but no significant associations with medication on P3A and MMN amplitudes. CONCLUSIONS: Our results add to the theory that P3B deficits are associated with general psychopathology, whereas P3A and MMN deficits appear to be associated with substance abuse and psychotic disorders respectively.


Subject(s)
Event-Related Potentials, P300 , Schizophrenia , Acoustic Stimulation/methods , Electroencephalography/methods , Event-Related Potentials, P300/physiology , Evoked Potentials , Evoked Potentials, Auditory/physiology , Humans , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...