Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 1758, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988285

ABSTRACT

The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

2.
Nat Commun ; 9(1): 591, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426891

ABSTRACT

Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.

3.
Phys Rev Lett ; 118(18): 185003, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524679

ABSTRACT

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

4.
Rev Sci Instrum ; 83(10): 10E348, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127005

ABSTRACT

Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 µm in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 µm at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 µm spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 µm, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20±4 at up to 200 eV electron temperatures.

5.
Phys Rev Lett ; 107(4): 045001, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21867013

ABSTRACT

Laser wakefield acceleration of electrons holds great promise for producing ultracompact stages of GeV scale, high-quality electron beams for applications such as x-ray free electron lasers and high-energy colliders. Ultrahigh intensity laser pulses can be self-guided by relativistic plasma waves (the wake) over tens of vacuum diffraction lengths, to give >1 GeV energy in centimeter-scale low density plasmas using ionization-induced injection to inject charge into the wake even at low densities. By restricting electron injection to a distinct short region, the injector stage, energetic electron beams (of the order of 100 MeV) with a relatively large energy spread are generated. Some of these electrons are then further accelerated by a second, longer accelerator stage, which increases their energy to ∼0.5 GeV while reducing the relative energy spread to <5% FWHM.

8.
Nursing ; 28(10): 88, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9801597
SELECTION OF CITATIONS
SEARCH DETAIL
...