Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 91(Pt 10): 2449-56, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20592107

ABSTRACT

Norovirus-like particles were imaged using atomic force microscopy. The mechanical stability of the virus-like particles (VLPs) was probed by nanoindentation at pH values ranging from 2 to 10. This range includes pH values of the natural environment during the life cycle of noroviruses. The resistance of VLPs to indentation was constant at acidic and neutral pH. The Young's modulus was of the order of 30 MPa. At basic pH the compliance of the capsid increased along with an increase in diameter. This specific pH-dependent mechanical response of the capsid may be related to mechanisms controlling uptake and release of the RNA during infection. Consecutive indentations with pressures ≤ 300 bar demonstrated the ability of the capsids to fully recover from deformations comparable with the size of the capsid. The capsids can be viewed as nanocontainers with an inbuilt self-repair mechanism. At pH 10 the capsids lost their stability and were irreversibly destroyed after one single indentation.


Subject(s)
Capsid/physiology , Capsid/ultrastructure , Norovirus/physiology , Norovirus/ultrastructure , Capsid/chemistry , Capsid/drug effects , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Norovirus/chemistry , Norovirus/drug effects , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...