Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Hum Brain Mapp ; 45(3): e26595, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38375968

ABSTRACT

Obesity is associated with negative effects on the brain. We exploit Artificial Intelligence (AI) tools to explore whether differences in clinical measurements following lifestyle interventions in overweight population could be reflected in brain morphology. In the DIRECT-PLUS clinical trial, participants with criterion for metabolic syndrome underwent an 18-month lifestyle intervention. Structural brain MRIs were acquired before and after the intervention. We utilized an ensemble learning framework to predict Body-Mass Index (BMI) scores, which correspond to adiposity-related clinical measurements from brain MRIs. We revealed that patient-specific reduction in BMI predictions was associated with actual weight loss and was significantly higher in active diet groups compared to a control group. Moreover, explainable AI (XAI) maps highlighted brain regions contributing to BMI predictions that were distinct from regions associated with age prediction. Our DIRECT-PLUS analysis results imply that predicted BMI and its reduction are unique neural biomarkers for obesity-related brain modifications and weight loss.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Body Mass Index , Brain/diagnostic imaging , Life Style , Magnetic Resonance Imaging , Obesity/diagnostic imaging , Obesity/therapy , Obesity/complications , Overweight/diagnostic imaging , Overweight/therapy , Weight Loss
2.
medRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37961472

ABSTRACT

Background: Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined. Methods: GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort using Illumina EPIC array and cord-blood DNA samples. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years. Results: Four BMIPCT trajectory groups described the long-term weight trajectories: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO") BMIPCT. were used GAmAge was a predictor of long-term obesity, differentiating between group with consistently high BMIPCT and group with normal BMIPCT patterns and groups with late OWO development. Such differentiation can be observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p<0.05 for all; multivariate models adjusted for GEAA, maternal smoking, delivery method, and child's sex). Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods. Conclusions: GAmAge is associated with BMI trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for future OWO risk.

3.
Front Endocrinol (Lausanne) ; 14: 1243910, 2023.
Article in English | MEDLINE | ID: mdl-38034010

ABSTRACT

Background: Fasting morning cortisol (FMC) stress hormone levels, are suggested to reflect increased cardiometabolic risk. Acute response to weight loss diet could elevate FMC. Richer Polyphenols and lower carbohydrates diets could favor FMC levels. We aimed to explore the effect of long-term high polyphenol Mediterranean diet (green-MED) on FMC and its relation to metabolic health. Methods: We randomized 294 participants into one of three dietary interventions for 18-months: healthy dietary guidelines (HDG), Mediterranean (MED) diet, and Green-MED diet. Both MED diets were similarly hypocaloric and lower in carbohydrates and included walnuts (28 g/day). The high-polyphenols/low-meat Green-MED group further included green tea (3-4 cups/day) and a Wolffia-globosa Mankai plant 1-cup green shakeFMC was obtained between 07:00-07:30AM at baseline, six, and eighteen-months. Results: Participants (age=51.1years, 88% men) had a mean BMI of 31.3kg/m2, FMC=304.07nmol\L, and glycated-hemoglobin-A1c (HbA1c)=5.5%; 11% had type 2 diabetes and 38% were prediabetes. Baseline FMC was higher among men (308.6 ± 90.05nmol\L) than women (269.6± 83.9nmol\L;p=0.02). Higher baseline FMC was directly associated with age, dysglycemia, MRI-assessed visceral adiposity, fasting plasma glucose (FPG), high-sensitivity C-reactive-protein (hsCRP), testosterone, Progesterone and TSH levels (p ≤ 0.05 for all). The 18-month retention was 89%. After 6 months, there were no significant changes in FMC among all intervention groups. However, after 18-months, both MED groups significantly reduced FMC (MED=-1.6%[-21.45 nmol/L]; Green-MED=-1.8%[-26.67 nmol/L]; p<0.05 vs. baseline), as opposed to HDG dieters (+4%[-12 nmol/L], p=0.28 vs. baseline), whereas Green-MED diet FMC change was significant as compared to HDG diet group (p=0.048 multivariable models). Overall, 18-month decrease in FMC levels was associated with favorable changes in FPG, HbA1c, hsCRP, TSH, testosterone and MRI-assessed hepatosteatosis, and with unfavorable changes of HDLc (p<0.05 for all, weight loss adjusted, multivariable models). Conclusion: Long-term adherence to MED diets, and mainly green-MED/high polyphenols diet, may lower FMC, stress hormone, levels,. Lifestyle-induced FMC decrease may have potential benefits related to cardiometabolic health, irrespective of weight loss. Clinical trial registration: ClinicalTrials.gov, identifier NCT03020186.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Diet, Mediterranean , Female , Humans , Male , Middle Aged , C-Reactive Protein , Fasting , Glycated Hemoglobin , Hydrocortisone , Testosterone , Thyrotropin , Weight Loss/physiology
4.
Precis Nutr ; 2(2): e00037, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37745028

ABSTRACT

Background: Overweight or obesity (OWO) in school-age childhood tends to persist into adulthood. This study aims to address a critical need for early identification of children at high risk of developing OWO by defining and analyzing longitudinal trajectories of body mass index percentile (BMIPCT) during early developmental windows. Methods: We included 3029 children from the Boston Birth Cohort (BBC) with repeated BMI measurements from birth to age 18 years. We applied locally weighted scatterplot smoothing with a time-limit scheme and predefined rules for imputation of missing data. We then used time-series K-means cluster analysis and latent class growth analysis to define longitudinal trajectories of BMIPCT from infancy up to age 18 years. Then, we investigated early life determinants of the BMI trajectories. Finally, we compared whether using early BMIPCT trajectories performs better than BMIPCT at a given age for predicting future risk of OWO. Results: After imputation, the percentage of missing data ratio decreased from 36.0% to 10.1%. We identified four BMIPCT longitudinal trajectories: early onset OWO; late onset OWO; normal stable; and low stable. Maternal OWO, smoking, and preterm birth were identified as important determinants of the two OWO trajectories. Our predictive models showed that BMIPCT trajectories in early childhood (birth to age 1 or 2 years) were more predictive of childhood OWO (age 5-10 years) than a single BMIPCT at age 1 or 2 years. Conclusions: Using longitudinal BMIPCT data from birth to age 18 years, this study identified distinct BMIPCT trajectories, examined early life determinants of these trajectories, and demonstrated their advantages in predicting childhood risk of OWO over BMIPCT at a single time point.

5.
BMC Med ; 21(1): 317, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612641

ABSTRACT

BACKGROUND: Maternal pre-pregnancy obesity is an established risk factor for childhood obesity. Investigating epigenetic alterations induced by maternal obesity during fetal development could gain mechanistic insight into the developmental origins of childhood obesity. While obesity disproportionately affects underrepresented racial and ethnic mothers and children in the USA, few studies investigated the role of prenatal epigenetic programming in intergenerational obesity of these high-risk populations. METHODS: This study included 903 mother-child pairs from the Boston Birth Cohort, a predominantly urban, low-income minority birth cohort. Mother-infant dyads were enrolled at birth and the children were followed prospectively to age 18 years. Infinium Methylation EPIC BeadChip was used to measure epigenome-wide methylation level of cord blood. We performed an epigenome-wide association study of maternal pre-pregnancy body mass index (BMI) and cord blood DNA methylation (DNAm). To quantify the degree to which cord blood DNAm mediates the maternal BMI-childhood obesity, we further investigated whether maternal BMI-associated DNAm sites impact birthweight or childhood overweight or obesity (OWO) from age 1 to age 18 and performed corresponding mediation analyses. RESULTS: The study sample contained 52.8% maternal pre-pregnancy OWO and 63.2% offspring OWO at age 1-18 years. Maternal BMI was associated with cord blood DNAm at 8 CpG sites (genome-wide false discovery rate [FDR] < 0.05). After accounting for the possible interplay of maternal BMI and smoking, 481 CpG sites were discovered for association with maternal BMI. Among them 123 CpGs were associated with childhood OWO, ranging from 42% decrease to 87% increase in OWO risk for each SD increase in DNAm. A total of 14 identified CpG sites showed a significant mediation effect on the maternal BMI-child OWO association (FDR < 0.05), with mediating proportion ranging from 3.99% to 25.21%. Several of these 14 CpGs were mapped to genes in association with energy balance and metabolism (AKAP7) and adulthood metabolic syndrome (CAMK2B). CONCLUSIONS: This prospective birth cohort study in a high-risk yet understudied US population found that maternal pre-pregnancy OWO significantly altered DNAm in newborn cord blood and provided suggestive evidence of epigenetic involvement in the intergenerational risk of obesity.


Subject(s)
Pediatric Obesity , Child , Pregnancy , Infant, Newborn , Infant , Female , Humans , Child, Preschool , Adolescent , Pediatric Obesity/epidemiology , Pediatric Obesity/genetics , Body Mass Index , DNA Methylation/genetics , Birth Cohort , Epigenome , Cohort Studies , Prospective Studies , Overweight
6.
Metabolism ; 145: 155594, 2023 08.
Article in English | MEDLINE | ID: mdl-37236302

ABSTRACT

BACKGROUND: The capacity of a polyphenol-enriched diet to modulate the epigenome in vivo is partly unknown. Given the beneficial metabolic effects of a Mediterranean (MED) diet enriched in polyphenols and reduced in red/processed meat (green-MED), as previously been proven by the 18-month DIRECT PLUS randomized controlled trial, we analyzed the effects of the green-MED diet on methylome and transcriptome levels to highlight molecular mechanisms underlying the observed metabolic improvements. METHODS: Our study included 260 participants (baseline BMI = 31.2 kg/m2, age = 5 years) of the DIRECT PLUS trial, initially randomized to one of the intervention arms: A. healthy dietary guidelines (HDG), B. MED (440 mg polyphenols additionally provided by walnuts), C. green-MED (1240 mg polyphenols additionally provided by walnuts, green tea, and Mankai: green duckweed shake). Blood methylome and transcriptome of all study subjects were analyzed at baseline and after completing the 18-month intervention using Illumina EPIC and RNA sequencing technologies. RESULTS: A total of 1573 differentially methylated regions (DMRs; false discovery rate (FDR) < 5 %) were found in the green-MED compared to the MED (177) and HDG (377) diet participants. This corresponded to 1753 differentially expressed genes (DEGs; FDR < 5 %) in the green-MED intervention compared to MED (7) and HDG (738). Consistently, the highest number (6 %) of epigenetic modulating genes was transcriptionally changed in subjects participating in the green-MED intervention. Weighted cluster network analysis relating transcriptional and phenotype changes among participants subjected to the green-MED intervention identified candidate genes associated with serum-folic acid change (all P < 1 × 10-3) and highlighted one module including the KIR3DS1 locus, being negatively associated with the polyphenol changes (e.g. P < 1 × 10-4), but positively associated with the MRI-assessed superficial subcutaneous adipose area-, weight- and waist circumference- 18-month change (all P < 0.05). Among others, this module included the DMR gene Cystathionine Beta-Synthase, playing a major role in homocysteine reduction. CONCLUSIONS: The green-MED high polyphenol diet, rich in green tea and Mankai, renders a high capacity to regulate an individual's epigenome. Our findings suggest epigenetic key drivers such as folate and green diet marker to mediate this capacity and indicate a direct effect of dietary polyphenols on the one­carbon metabolism.


Subject(s)
Diet, Mediterranean , Humans , Polyphenols/pharmacology , Diet , Obesity , Tea , Epigenesis, Genetic
7.
EBioMedicine ; 91: 104550, 2023 May.
Article in English | MEDLINE | ID: mdl-37088033

ABSTRACT

BACKGROUND: DNA methylation (DNAm) in cord blood has been associated with various prenatal factors and birth outcomes. This study sought to fill an important knowledge gap: the link of cord DNAm with child postnatal growth trajectories from birth to age 18 years (y). METHODS: Using data from a US predominantly urban, low-income, multi-ethnic birth cohort (N = 831), we first applied non-parametric methods to identify body-mass-index percentile (BMIPCT) trajectories from birth to age 18 y (the outcome); then, conducted epigenome-wide association study (EWAS) of the outcome, interrogating over 700,000 CpG sites profiled by the Illumina Infinium MethylationEPIC BeadChip. Multivariate linear regression models and likelihood ratio tests (LRT) were applied to examine the DNAm-outcome association in the overall sample and sex strata. FINDINGS: We identified four distinct patterns of BMIPCT trajectories: normal weight (NW), Early overweight or obesity (OWO), Late OWO, and normal to very late OWO. DNAm at CpG18582997 annotated to TPGS1, CpG15241084 of TLR7, and cg24350936 of RAB31 were associated with BMIPCT at birth-to-3 y, 10 y, and 14 y, respectively (LRT FDR < 0.05 for all). INTERPRETATION: In this prospective birth cohort study, we identified 4 distinct and robust patterns of growth trajectories from birth to 18 y, which were associated with variations in cord blood DNAm at genes implicated in inflammation induction pathways. These findings, if further replicated, raise the possibility that these DNAm markers along with early assessment of BMIPCT trajectories may help identify young children at high-risk for obesity later in life. FUNDING: Detailed in the Acknowledgements section.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Child , Infant, Newborn , Pregnancy , Female , Humans , Adolescent , Child, Preschool , Body Mass Index , Cohort Studies , Prospective Studies , Genome-Wide Association Study , Obesity/genetics , rab GTP-Binding Proteins/genetics
9.
Genome Med ; 14(1): 29, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35264213

ABSTRACT

BACKGROUND: Previous studies have linked the Mediterranean diet (MED) with improved cardiometabolic health, showing preliminary evidence for a mediating role of the gut microbiome. We recently suggested the Green-Mediterranean (Green-MED) diet as an improved version of the healthy MED diet, with increased consumption of plant-based foods and reduced meat intake. Here, we investigated the effects of MED interventions on the gut microbiota and cardiometabolic markers, and the interplay between the two, during the initial weight loss phase of the DIRECT-PLUS trial. METHODS: In the DIRECT-PLUS study, 294 participants with abdominal obesity/dyslipidemia were prospectively randomized to one of three intervention groups: healthy dietary guidelines (standard science-based nutritional counseling), MED, and Green-MED. Both isocaloric MED and Green-MED groups were supplemented with 28g/day walnuts. The Green-MED group was further provided with daily polyphenol-rich green tea and Mankai aquatic plant (new plant introduced to a western population). Gut microbiota was profiled by 16S rRNA for all stool samples and shotgun sequencing for a select subset of samples. RESULTS: Both MED diets induced substantial changes in the community structure of the gut microbiome, with the Green-MED diet leading to more prominent compositional changes, largely driven by the low abundant, "non-core," microorganisms. The Green-MED diet was associated with specific microbial changes, including enrichments in the genus Prevotella and enzymatic functions involved in branched-chain amino acid degradation, and reductions in the genus Bifidobacterium and enzymatic functions responsible for branched-chain amino acid biosynthesis. The MED and Green-MED diets were also associated with stepwise beneficial changes in body weight and cardiometabolic biomarkers, concomitantly with the increased plant intake and reduced meat intake. Furthermore, while the level of adherence to the Green-MED diet and its specific green dietary components was associated with the magnitude of changes in microbiome composition, changes in gut microbial features appeared to mediate the association between adherence to the Green-MED and body weight and cardiometabolic risk reduction. CONCLUSIONS: Our findings support a mediating role of the gut microbiome in the beneficial effects of the Green-MED diet enriched with Mankai and green tea on cardiometabolic risk factors. TRIAL REGISTRATION: The study was registered on ClinicalTrial.gov ( NCT03020186 ) on January 13, 2017.


Subject(s)
Cardiovascular Diseases , Diet, Mediterranean , Gastrointestinal Microbiome , Amino Acids, Branched-Chain , Biomarkers , Cardiovascular Diseases/prevention & control , Diet , Humans , RNA, Ribosomal, 16S , Tea , Weight Loss
10.
Eur J Intern Med ; 92: 17-23, 2021 10.
Article in English | MEDLINE | ID: mdl-33883079

ABSTRACT

BACKGROUND: We recently reported that autologous fecal microbiota transplantation (aFMT), derived from the time of maximal weight-loss and administrated in the regain-phase, might preserve weight loss and glycemic control in moderately obese subjects, and is associated with specific microbiome signatures. Here, we sought to explore the global effect of aFMT on adipokines, inflammatory markers and blood cholesterol and on the overall gut microbiome preservation. METHODS: In the DIRECT-PLUS weight-loss trial, abdominally obese participants were randomized to three distinct weight-loss diets. Following the expected weight loss phase (0-6 m), 90 participants were randomized to receive their personal frozen fecal microbiota or placebo oral capsules (ten 1 g-capsules over ten sessions-total=100 g) during the expected weight regain phase (8-14 m). RESULTS: Of the 90 participants (age=52 yr; 0-6 m weight loss=-8.3 kg), 95.6% ingested at least 80/100 oral aFMT/placebo capsules over 6 months. Overall, the gut microbiome community structure was associated with plasma levels of leptin, cholesterol and interleukin-6 at baseline and after 6 m, whereas 6 m (weight loss phase) changes in specific microbiome species associated with the dynamic of leptin and inflammatory biomarkers. Following the 8-14 m aFMT administration phase, aFMT maintained decreased levels of leptin (ΔaFMT=-3.54 ng/mL vs. Δplacebo=-0.82 ng/mL;P = 0.04), C-reactive-protein (ΔaFMT=-1.45 mg/L vs. Δplacebo=-0.66 mg/L;P = 0.009), Interleukin-6 (ΔaFMT=-0.03pg/mL vs. Δplacebo=1.11pg/mL;P = 0.03) and total cholesterol (ΔaFMT=2.2 mg/dl vs. Δplacebo=13.1 mg/dl;P = 0.04) achieved in the weight loss phase. Overall, aFMT induced a significant preservatory effect on personal gut microbiome global composition (P = 0.03;Jensen-Shannon distance), as compared to placebo. CONCLUSIONS: aFMT treatment in the regain phase might retain weight-loss induced metabolic benefits. These findings may suggest a novel aFMT treatment approach for personal metabolic attainment preservation.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Feces , Humans , Middle Aged , Obesity/therapy , Weight Loss
11.
J Gen Intern Med ; 36(8): 2300-2306, 2021 08.
Article in English | MEDLINE | ID: mdl-33634382

ABSTRACT

BACKGROUND: Obesity is associated with elevated blood pressure (BP). In patients with obesity and hypertension, weight loss lowers BP, but the long-term effect of weight loss on BP is less clear. OBJECTIVE: We aimed to assess the effect of long-term weight loss intervention on BP in normotensive and hypertensive subjects. DESIGN: Randomized controlled trial. PARTICIPANTS: Two hundred seventy-eight subjects (mean age 47.9 ± 9.3 years, 89% male, 56% hypertensive) with abdominal obesity or elevated serum triglycerides and low high-density lipoprotein cholesterol were recruited. INTERVENTION: Eighteen-month weight loss intervention. MAIN MEASURES: Body weight and BP were measured at baseline, after 6 and 18 months. RESULTS: After 6 months of intervention, in the weight loss phase, body mass index (BMI) decreased by an average of -2.2±1.5 kg/m2 (p<0.001) and both diastolic BP (DBP) and systolic BP (SBP) decreased by -2.1±8.8 mmHg and -2.3±12.9 mmHg, respectively (p<0.01 for both). The change in BMI was similar in normotensive and hypertensive subjects (-2.0±1.6 and -2.3±1.5, p = 0.246). However, DBP and SBP decreased significantly (-5.2±7.1 mmHg and -6.2±12.5 mmHg, respectively, p<0.001 for both) in hypertensive subjects, and increased in normotensive subjects (1.8±9.3 mmHg, p = 0.041 and 2.7±11.7 mmHg, p = 0.017, respectively). After 18 months, in the weight maintenance phase, BMI slightly increased (0.9±1.3 kg/m2, p<0.001) but remained significantly lower than at baseline (p<0.0001). Unlike BMI, DBP and SBP increased significantly in hypertensive subjects (p<0.001) and returned almost to baseline levels. CONCLUSION: Weight-loss intervention reduced BP in hypertensive patients, but this was not maintained in the long run. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01530724.


Subject(s)
Hypertension , Weight Loss , Adult , Blood Pressure , Body Mass Index , Female , Humans , Hypertension/therapy , Male , Middle Aged , Obesity/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...