Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(11): e2207673, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36594431

ABSTRACT

High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax  = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.

2.
ACS Omega ; 6(43): 28507-28514, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746546

ABSTRACT

Natural killer (NK)-cell-based immunotherapy is emerging as an attractive approach for cancer treatment. However, to facilitate and expedite clinical implementation, important questions must be answered regarding the in vivo functionality and trafficking patterns of the transferred cells. We have recently developed a noninvasive cell-tracking technique, based on gold nanoparticles (GNPs) as cell-labeling and contrast agents for whole-body computed tomography (CT) imaging. Herein, we report the implementation of this technique for longitudinal and quantitative tracking of NK cell kinetics, the migration and biodistribution in tumor-bearing mice. NK cells were successfully labeled with GNPs, without impairing their biological function, as assessed both in vitro, by cytokine release and cytotoxicity assays, and in vivo, using a xenograft model of human tumors. Using CT, we longitudinally tracked the migration of intravenously injected NK cells and observed an accumulation of effector cell clusters at the tumor site, up to 72 h. Fluorescence imaging of the cells over time correlated with ex vivo quantitative analysis of gold content in the tumor, validating the accuracy and reliability of our technique. Our cell-tracking approach thus offers a valuable tool for preclinical studies, as well as for clinical applications, to elucidate the fate of NK cells and promote the implementation of NK-cell-based immunotherapy.

3.
J Am Chem Soc ; 142(47): 19917-19925, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33174728

ABSTRACT

Triplet-triplet annihilation upconversion (TTA-UC) is an unconventional photophysical process that yields high-energy photons from low-energy incident light and offers pathways for innovation across many technologies, including solar energy harvesting, photochemistry, and optogenetics. Within aromatic organic chromophores, TTA-UC is achieved through several consecutive energy conversion events that ultimately fuse two triplet excitons into a singlet exciton. In chromophores where the singlet exciton is roughly isoergic with two triplet excitons, the limiting step is the triplet-triplet annihilation pathway, where the kinetics and yield depend sensitively on the energies of the lowest singlet and triplet excited states. Herein we report up to 40-fold improvements in upconversion quantum yields using molecular engineering to selectively tailor the relative energies of the lowest singlet and triplet excited states, enhancing the yield of triplet-triplet annihilation and promoting radiative decay of the resulting singlet exciton. Using this general and effective strategy, we obtain upconversion yields with red emission that are among the highest reported, with remarkable chemical stability under ambient conditions.

4.
Sci Rep ; 9(1): 1650, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733548

ABSTRACT

Gold nanoparticles are widely exploited in phototherapy. Owing to their biocompatibility and their strong visible-light surface plasmonic resonance, these particles also serve as contrast agents for cell image enhancement and super-resolved imaging. Yet, their optical signal is still insufficiently strong for many important real-life applications. Also, the differentiation between adjacent nanoparticles is usually limited by the optical resolution and the orientations of non-spherical particles are unknown. These limitations hamper the progress in cell research by direct optical microscopy and narrow the range of phototherapy applications. Here we demonstrate exploiting the optical anisotropy of non-spherical nanoparticles to achieve super-resolution in live cell imaging and to resolve the intracellular nanoparticle orientations. In particular, by modulating the light polarization and taking advantage of the polarization-dependence of gold nanorod optical properties, we realize the 'lock-in amplification', widely-used in electronic engineering, to achieve image enhancement in live cells and in cells that undergo apoptotic changes.


Subject(s)
Apoptosis , Gold/chemistry , Melanoma, Experimental/pathology , Metal Nanoparticles/chemistry , Microscopy/instrumentation , Animals , Mice , Tumor Cells, Cultured
5.
Biomaterials ; 174: 67-78, 2018 08.
Article in English | MEDLINE | ID: mdl-29783118

ABSTRACT

Duchenne muscular dystrophy (DMD) is a degenerative lethal, X-linked disease of skeletal and cardiac muscles caused by mutations in the dystrophin gene. Cell therapy using different cell types, including mesenchymal stromal cells (MSCs), has been considered as a potential approach for the treatment of DMD. MSCs can be obtained from autologous sources such as bone marrow and adipose tissues or from allogeneic placenta and umbilical cord. The safety and therapeutic impact of these cells has been demonstrated in pre-clinical and clinical studies and their functions are attributed to paracrine effects that are mediated by secreted cytokines and extracellular vesicles. Here, we studied the therapeutic effects of placenta-derived MSCs (PL-MSCs) and their secreted exosomes using mouse and human myoblasts from healthy controls, Duchenne patients and mdx mice. Treatment of myoblasts with conditioned medium or exosomes secreted by PL-MSCs increased the differentiation of these cells and decreased the expression of fibrogenic genes in DMD patient myoblasts. In addition, these treatments also increased the expression of utrophin in these cells. Using a quantitative miR-29c reporter, we demonstrated that the PL-MSC effects were partly mediated by the transfer of exosomal miR-29c. Intramuscular transplantation of PL-MSCs in mdx mice resulted in decreased creatine kinase levels. PL-MSCs significantly decreased the expression of TGF-ß and the level of fibrosis in the diaphragm and cardiac muscles, inhibited inflammation and increased utrophin expression. In vivo imaging analyses using MSCs labeled with gold nanoparticles or fluorescent dyes demonstrated localization of the cells in the muscle tissues up to 3 weeks post treatment. Altogether, these results demonstrate that PL-MSCs and their secreted exosomes have important clinical applications in cell therapy of DMD partly via the targeted delivery of exosomal miR-29c.


Subject(s)
Exosomes/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Placenta/cytology , Adipose Tissue/metabolism , Animals , Cell Differentiation/drug effects , Culture Media, Conditioned/metabolism , Dystrophin/metabolism , Extracellular Vesicles/metabolism , Female , Fluorescent Dyes/chemistry , Gene Expression Regulation/drug effects , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Mice, Inbred mdx , MicroRNAs/metabolism , Myoblasts/drug effects , Placenta/drug effects , Pregnancy , Transfection/methods , Transforming Growth Factor beta/metabolism , Umbilical Cord/metabolism , Utrophin/metabolism
6.
Article in English | MEDLINE | ID: mdl-28544497

ABSTRACT

Cell-based therapies utilize transplantation of living cells with therapeutic traits to alleviate numerous diseases and disorders. The use of such biological agents is an attractive alternative for diseases that existing medicine cannot effectively treat. Although very promising, translating cell therapy to the clinic has proven to be challenging, due to inconsistent results in preclinical and clinical studies. To examine the underlying cause for these inconsistencies, it is crucial to noninvasively monitor the accuracy of cell injection, and cell survival and migration patterns. The combination of classical imaging techniques with cellular contrast agents-mainly nanotechnological-based-has enabled significant developments in cell-tracking methodologies. One novel methodology, based on computed tomography (CT) as an imaging modality and gold nanoparticles (AuNPs) as contrast agents, has recently gained interest for its clinical applicability and cost-effectiveness. Studies have shown that AuNPs can be used to efficiently label a variety of cell types, including stem cells and immune cells, without damaging their therapeutic efficacy. Successful in vivo experiments have demonstrated noninvasive, quantitative and longitudinal cell tracking with high sensitivity. This concept has the potential to be used not only as a research tool, but in clinical settings as well. WIREs Nanomed Nanobiotechnol 2018, 10:e1480. doi: 10.1002/wnan.1480 This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Subject(s)
Cell Tracking/methods , Gold , Metal Nanoparticles/chemistry , Molecular Imaging/methods , Tomography, X-Ray Computed/methods , Animals , Cells, Cultured , Gold/chemistry , Gold/pharmacokinetics , Humans , Mice , Neoplasms, Experimental/diagnostic imaging
7.
ACS Nano ; 11(11): 11127-11134, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29028305

ABSTRACT

Cancer immunotherapy has made enormous progress in offering safer and more effective treatments for the disease. Specifically, programmed death ligand 1 antibody (αPDL1), designed to perform immune checkpoint blockade (ICB), is now considered a pillar in cancer immunotherapy. However, due to the complexity and heterogeneity of tumors, as well as the diversity in patient response, ICB therapy only has a 30% success rate, at most; moreover, the efficacy of ICB can be evaluated only two months after start of treatment. Therefore, early identification of potential responders and nonresponders to therapy, using noninvasive means, is crucial for improving treatment decisions. Here, we report a straightforward approach for fast, image-guided prediction of therapeutic response to ICB. In a colon cancer mouse model, we demonstrate that the combination of computed tomography imaging and gold nanoparticles conjugated to αPDL1 allowed prediction of therapeutic response, as early as 48 h after treatment. This was achieved by noninvasive measurement of nanoparticle accumulation levels within the tumors. Moreover, we show that the nanoparticles efficiently prevented tumor growth with only a fifth of the standard dosage of clinical care. This technology may be developed into a powerful tool for early and noninvasive patient stratification as responders or nonresponders.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Colonic Neoplasms/therapy , Immunotherapy , Metal Nanoparticles/administration & dosage , Animals , B7-H1 Antigen/immunology , Biomarkers, Pharmacological/chemistry , Colonic Neoplasms/immunology , Gold/chemistry , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Metal Nanoparticles/chemistry , Mice , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
8.
Nanomedicine ; 13(2): 421-429, 2017 02.
Article in English | MEDLINE | ID: mdl-27720990

ABSTRACT

Contradictory results in clinical trials are preventing the advancement and implementation of cell-based therapy. To explain such results, there is a need to uncover the mystery regarding the fate of the transplanted cells. To answer this need, we developed a technique for noninvasive in vivo cell tracking, which uses gold nanoparticles as contrast agents for CT imaging. Herein, we investigate the design principles of this technique for intramuscular transplantation of therapeutic cells. Longitudinal studies were performed, displaying the ability to track cells over long periods of time. As few as 500 cells could be detected and a way to quantify the number of cells visualized by CT was demonstrated. Moreover, monitoring of cell functionality was demonstrated on a mouse model of Duchenne muscular dystrophy. This cell-tracking technology has the potential to become an essential tool in pre-clinical as well as clinical trials and to advance the future of cell therapy.


Subject(s)
Cell Tracking , Nanoparticles , Tomography, X-Ray Computed/methods , Animals , Contrast Media , Disease Models, Animal , Gold , Mice , Muscular Dystrophy, Duchenne
9.
Sci Rep ; 5: 15400, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26507853

ABSTRACT

Recent advances in theranostic nanomedicine can promote stem cell and immune cell-based therapy. Gold nanoparticles (GNPs) have been shown to be promising agents for in-vivo cell-tracking in cell-based therapy applications. Yet a crucial challenge is to develop a reliable protocol for cell upload with, on the one hand, sufficient nanoparticles to achieve maximum visibility of cells, while on the other hand, assuring minimal effect of particles on cell function and viability. Previous studies have demonstrated that the physicochemical parameters of GNPs have a critical impact on their efficient uptake by cells. In the current study we have examined possible variations in GNP uptake, resulting from different incubation period and concentrations in different cell-lines. We have found that GNPs effectively labeled three different cell-lines - stem, immune and cancer cells, with minimal impairment to cell viability and functionality. We further found that uptake efficiency of GNPs into cells stabilized after a short period of time, while GNP concentration had a significant impact on cellular uptake, revealing cell-dependent differences. Our results suggest that while heeding the slight variations within cell lines, modifying the loading time and concentration of GNPs, can promote cell visibility in various nanoparticle-dependent in-vivo cell tracking and imaging applications.


Subject(s)
Cell Tracking/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Cell Line , Cell Survival , Humans , Neoplasms/physiopathology , Stem Cells/physiology , T-Lymphocytes/physiology , Theranostic Nanomedicine
10.
Sci Rep ; 5: 15473, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26498517

ABSTRACT

Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold-particle tagged samples using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is presented and validated both on simulated data as well as experimentally.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Cell Line, Tumor , Humans
11.
ACS Nano ; 9(6): 6363-72, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26039633

ABSTRACT

Application of immune cell-based therapy in routine clinical practice is challenging due to the poorly understood mechanisms underlying success or failure of treatment. Development of accurate and quantitative imaging techniques for noninvasive cell tracking can provide essential knowledge for elucidating these mechanisms. We designed a novel method for longitudinal and quantitative in vivo cell tracking, based on the superior visualization abilities of classical X-ray computed tomography (CT), combined with state-of-the-art nanotechnology. Herein, T-cells were transduced to express a melanoma-specific T-cell receptor and then labeled with gold nanoparticles (GNPs) as a CT contrast agent. The GNP-labeled T-cells were injected intravenously to mice bearing human melanoma xenografts, and whole-body CT imaging allowed examination of the distribution, migration, and kinetics of T-cells. Using CT, we found that transduced T-cells accumulated at the tumor site, as opposed to nontransduced cells. Labeling with gold nanoparticles did not affect T-cell function, as demonstrated both in vitro, by cytokine release and proliferation assays, and in vivo, as tumor regression was observed. Moreover, to validate the accuracy and reliability of the proposed cell tracking technique, T-cells were labeled both with green fluorescent protein for fluorescence imaging, and with GNPs for CT imaging. A remarkable correlation in signal intensity at the tumor site was observed between the two imaging modalities, at all time points examined, providing evidence for the accuracy of our CT cell tracking abilities. This new method for cell tracking with CT offers a valuable tool for research, and more importantly for clinical applications, to study the fate of immune cells in cancer immunotherapy.


Subject(s)
Cell Tracking , Gold/chemistry , Immunotherapy , Metal Nanoparticles/chemistry , Nanomedicine , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes/immunology , Tomography, X-Ray Computed , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Mice , Mice, Nude
12.
Sci Rep ; 5: 10965, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26020693

ABSTRACT

In this paper we present a technique aimed for simultaneous detection of multiple types of gold nanoparticles (GNPs) within a biological sample, using lock-in detection. We image the sample using a number of modulated laser beams that correspond to the number of GNP species that label a given sample. The final image where the GNPs are spatially separated is obtained computationally. The proposed method enables the simultaneous superresolved imaging of different areas of interest within biological sample and also the spatial separation of GNPs at sub-diffraction distances, making it a useful tool in the study of intracellular trafficking pathways in living cells.

13.
Biomed Opt Express ; 6(4): 1262-72, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25909010

ABSTRACT

Localization microscopy provides valuable insights into cellular structures and is a rapidly developing field. The precision is mainly limited by additive noise and the requirement for single molecule imaging that dictates a low density of activated emitters in the field of view. In this paper we present a technique aimed for noise reduction and improved localization accuracy. The method has two steps; the first is the imaging of gold nanoparticles that labels targets of interest inside biological cells using a lock-in technique that enables the separation of the signal from the wide spread spectral noise. The second step is the application of the K-factor nonlinear image decomposition algorithm on the obtained image, which improves the localization accuracy that can reach 5nm and enables the localization of overlapping particles at minimal distances that are closer by 65% than conventional methods.

14.
Sci Rep ; 5: 8244, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25650019

ABSTRACT

Utilizing the surface plasmon resonance effect in gold nanoparticles enables their use as contrast agents in a variety of applications for compound cellular imaging. However, most techniques suffer from poor signal to noise ratio (SNR) statistics due to high shot noise that is associated with low photon count in addition to high background noise. We demonstrate an effective way to improve the SNR, in particular when the inspected signal is indistinguishable in the given noisy environment. We excite the temporal flickering of the scattered light from gold nanoparticle that labels a biological sample. By preforming temporal spectral analysis of the received spatial image and by inspecting the proper spectral component corresponding to the modulation frequency, we separate the signal from the wide spread spectral noise (lock-in amplification).


Subject(s)
Cell Tracking/methods , Nanoparticles , Animals , Cell Tracking/standards , Gold , Melanoma, Experimental , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Signal-To-Noise Ratio
15.
Nanomedicine (Lond) ; 9(13): 2059-69, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25343353

ABSTRACT

Cell-based therapy offers a promising solution for the treatment of diseases and injuries that conventional medicines and therapies cannot cure effectively, and thus comprises an encouraging arena for future medical breakthroughs. The development of an accurate and quantitative noninvasive cell tracking technique is a highly challenging task that could help in evaluating the effectiveness of treatments. Moreover, cell tracking could provide essential knowledge regarding the fundamental trafficking patterns and poorly understood mechanisms underlying the success or failure of cell therapy. This article focuses on gold nanoparticles, which provide cells with 'visibility' in a variety of imaging modalities for stem cell therapy, immune cell therapy and cancer treatment. Current challenges and future prospects relating to the use of gold nanoparticles in such roles are discussed.


Subject(s)
Cell Tracking/methods , Gold , Metal Nanoparticles , Neoplasms/therapy , Contrast Media , Genetic Therapy , Humans , Stem Cell Transplantation
16.
Chemistry ; 17(27): 7623-31, 2011 Jun 27.
Article in English | MEDLINE | ID: mdl-21594911

ABSTRACT

The new approach for palladium-catalyzed cross-coupling of two non-activated aromatic compounds (D. R. Stuart, K. Fagnou, Science 2007, 316, 1172) was studied theoretically. The energetic span model (S. Kozuch, S. Shaik, Acc. Chem. Res. 2011, 44, 101, and references therein) was employed to analyze the kinetic behavior of the catalytic cycle. The computed energy profile, combined with the energetic span model, accounts for the experimental selectivity, which favors the hetero-coupling of benzene with indole. This selectivity is driven by a fine balance of the entropic contributions and the high ratio of concentrations used for benzene over indole. This analysis may allow future theoretical predictions of how different aromatic compounds can be effectively coupled.

17.
Chemphyschem ; 11(1): 301-10, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-19998402

ABSTRACT

Herein we demonstrate that an external electric field (EEF) acts as an accessory catalyst/inhibitor for Diels-Alder (DA) reactions. When the EEF is oriented along the "reaction axis" (the coordinate of approach of the reactants in the reaction path), the barrier of the DA reactions is lowered by a significant amount, equivalent to rate enhancements by 4-6 orders of magnitude. Simply flipping the EEF direction has the opposite effect, and the EEF acts as an inhibitor. Additionally, an EEF oriented perpendicular to the "reaction axis" in the direction of the individual molecule dipoles can change the endo/exo selectivity, favouring one or the other depending on the positive/negative directions of the EEF vis-à-vis the individual molecular dipole. At some critical value of the EEF along the "reaction axis", there is a crossover to a stepwise mechanism that involves a zwitterionic intermediate. The valence bond diagram model is used to comprehend these trends and to derive a selection rule for EEF effects on chemical reactions: an EEF aligned in the direction of the electron flow between the reactants will lower the reaction barrier. It is shown that the exo/endo control by the EEF is not associated with changes in secondary orbital interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...