Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Microorganisms ; 11(11)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38004783

ABSTRACT

Industrial interest in surfactants of microbial origin has intensified recently due to the characteristics of these compounds, such as biodegradability and reduced toxicity, and their efficiency in removing heavy metals and hydrophobic organic compounds from soils and waters. The aim of this study was to produce a biosurfactant using Candida bombicola URM 3712 in a low-cost medium containing 5.0% molasses, 3.0% corn steep liquor and 2.5% residual frying oil for 144 h at 200 rmp. Measurements of engine oil tension and emulsification were made under extreme conditions of temperature (0 °C, 5 °C, 70 °C, 100 °C and 120 °C), pH (2-12) and NaCl concentrations (2-12), demonstrating the stability of the biosurfactant. The isolated biosurfactant was characterized as an anionic molecule with the ability to reduce the surface tension of water from 72 to 29 mN/m, with a critical micellar concentration of 0.5%. The biosurfactant had no toxic effect on vegetable seeds or on Eisenia fetida as a bioindicator. Applications in the removal of heavy metals from contaminated soils under dynamic conditions demonstrated the potential of the crude and isolated biosurfactant in the removal of Fe, Zn and Pb with percentages between 70 and 88%, with the highest removal of Pb being 48%. The highest percentage of removal was obtained using the cell-free metabolic liquid, which was able to remove 48, 71 and 88% of lead, zinc and iron from the soil, respectively. Tests in packed columns also confirmed the biosurfactant's ability to remove Fe, Zn and Pb between 40 and 65%. The removal kinetics demonstrated an increasing percentage, reaching removal of 50, 70 and 85% for Pb, Zn and Fe, respectively, reaching a greater removal efficiency at the end of 24 h. The biosurfactant was also able to significantly reduce the electrical conductivity of solutions containing heavy metals. The biosurfactant produced by Candida bombicola has potential as an adjuvant in industrial processes for remediating soils and effluents polluted by inorganic contaminants.

2.
Electron. j. biotechnol ; 51: 28-39, May. 2021. ilus, tab, graf
Article in English | LILACS | ID: biblio-1343460

ABSTRACT

Science has greatly contributed to the advancement of technology and to the innovation of production processes and their applications. Cleaning products have become indispensable in today's world, as personal and environmental hygiene is important to all societies worldwide. Such products are used in the home, in most work environments and in the industrial sectors. Most of the detergents on the market are synthesised from petrochemical products. However, the interest in reducing the use of products harmful to human health and the environment has led to the search for detergents formulated with natural, biodegradable surfactant components of biological (plant or microbiological) origin or chemically synthesised from natural raw materials usually referred to as green surfactants. This review addresses the different types, properties, and uses of surfactants, with a focus on green surfactants, and describes the current scenario as well as the projections for the future market economy related to the production of the different types of green surfactants marketed in the world.


Subject(s)
Surface-Active Agents , Industry , Biological Products , Detergents
3.
Biodegradation ; 30(4): 215-233, 2019 08.
Article in English | MEDLINE | ID: mdl-29725781

ABSTRACT

The industrial interest in microbial surfactants has intensified in recent years due to the characteristics of these compounds, such as biodegradability, low toxicity, and effectiveness in removing heavy metals and hydrophobic organic compounds from soil and water. This paper describes the production of a biosurfactant by the yeast Candida tropicalis grown in distilled water with 2.5% molasses, 2.5% frying oil and 4% corn steep liquor. The production of the biosurfactant reached 27 g/l in a 50-l bioreactor with a surface tension of 30 mN/m. Surface tension and engine oil emulsification assays demonstrated the stability of biosurfactant under extreme conditions of temperature and pH as well as in the presence of NaCl. Chemical structures of the biosurfactant were identified using GC-MS and NMR. The isolated biosurfactant was characterised as an anionic molecule capable of reducing the surface tension of water from 70 to 30 mN/m at 0.5% of the critical micelle concentration, with no toxic effects on plant seeds or brine shrimp. In tests involving both the crude and isolated biosurfactant for the removal of heavy metals from contaminated sand under dynamic conditions, the removal rates for Zn and Cu ranged from 30 to 80%, while the best removal rate for Pb was 15%. Tests in packed columns also confirmed the ability of biosurfactant to remove Cu and Zn at rates ranging from 45 to 65%. However, lead was not removed under static conditions. The removal kinetics demonstrated that 30 min was sufficient for the removal of metals and a single washing with the biosurfactant achieved greater removal efficiency. The use of the biosurfactant led to a significant reduction in the electrical conductivity of solutions containing heavy metals. The present findings as well as a brief economic analysis suggest the great potential of this agent for industrial remediation processes of soil and water polluted with inorganic contaminants.


Subject(s)
Metals, Heavy , Biodegradation, Environmental , Soil , Surface Tension , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...