Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 12(6-7): 506-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16008129

ABSTRACT

The medicinal plant Ocimum gratissimum L. (Labiatae) is widely encountered in the Northeast of Brasil where it is used to treat digestive problems. Its leaves have an essential oil (EOOG) content whose chemical composition varies according to the time of plant collection. We have compared the effects of the EOOG, collected at 08:00 a.m. (EOOG8) and at 12:00 a.m. (EOOG12), on the relaxation of guinea-pig isolated ileum. Both EOOG8 and EOOG12 (30-300 microg/ml) reversibly relaxed the spontaneous tonus of the guinea-pig ileum in a concentration-dependent manner, with similar IC50 values (49.3 and 23.8 microg/ml, respectively). The magnitude of the decrease in resting tonus was similar to that of the recognised smooth muscle relaxant papaverine. EOOG8 and EOOG12 relaxed 60 mM KCl-precontracted preparations similarly (38.33 +/- 9.91 microg/ml and 35.53 +/- 6.70), whereas a significantly more potent relaxant effect of EOOG12 compared to EOOG8 was observed when tissues were contracted using 10 microM acetylcholine (IC50 values of 69.55 +/- 4.93 and 128.16 +/- 15.70 microg/ml, respectively; p < 0.05). The principal constituents of the essential oil, eugenol and cineole, also relaxed KCl-precontracted preparations, although they were less potent than EOOG, suggesting that they alone were not responsible for EOOG-induced relaxations. Our results show that the essential oil extracted from the leaves of O. gratissimum L., collected at different time periods, exerts significant relaxant effects on isolated guinea-pig ileum which may underlie the therapeutic action of the plant.


Subject(s)
Ileum/drug effects , Muscle Relaxation/drug effects , Ocimum , Parasympatholytics/pharmacology , Phytotherapy , Plant Oils/pharmacology , Animals , Dose-Response Relationship, Drug , Guinea Pigs , Male , Muscle Tonus/drug effects , Muscle, Smooth/drug effects , Parasympatholytics/administration & dosage , Parasympatholytics/therapeutic use , Plant Leaves , Plant Oils/administration & dosage , Plant Oils/therapeutic use
2.
J Pharm Pharmacol ; 57(3): 375-81, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15807994

ABSTRACT

PAL is a glucose/mannose-specific lectin isolated from Pisum arvense seeds. Previously, we demonstrated the capacity of other leguminous lectins to induce oedema formation and neutrophil stimulation. To investigate the potential pro-inflammatory activity of PAL, we have studied its ability to induce neutrophil migration into peritoneal cavities of rats and neutrophil chemotaxis in-vitro. The role of resident cells and sugar residues on PAL activity was analysed. PAL or saline (control) were administered intraperitoneally to rats, and total and differential leucocyte (macrophages, neutrophils and mast cells) counts were performed. The role of resident cells on the PAL effect was evaluated using three strategies: reducing the total resident cell population by lavage of rat cavities with saline; increasing macrophage population by treating animals with thioglycolate; and depleting mast cell population by subchronic treatment of rats with compound 48/80. PAL induced in-vitro and in-vivo neutrophil migration. In-vivo, PAL (50, 100, 200 and 300 microg) significantly (P < 0.05) and dose-dependently increased neutrophil migration by 600, 740, 900 and 940%, respectively, showing maximal effect 4 h after injection. PAL induced mononuclear cell migration. The neutrophil stimulatory effect of PAL was potentiated in animals treated with both thioglycolate and compound 48/ 80. The indirect lectin chemotactic effect was shown in rats injected with supernatant from cultured macrophages stimulated by PAL. In conclusion, PAL was shown to exhibit in-vivo and in-vitro proinflammatory activity. The in-vivo effect seemed to occur by a dual mechanism that was independent, but also dependent, on resident cells.


Subject(s)
Chemotaxis, Leukocyte , Neutrophils/drug effects , Plant Lectins/pharmacology , Seeds/chemistry , Animals , Dose-Response Relationship, Drug , Female , In Vitro Techniques , Macrophages, Peritoneal/metabolism , Male , Mast Cells/metabolism , Neutrophils/physiology , Peritoneal Cavity/cytology , Peritoneal Lavage , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...