Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Appl Biomech ; 35(4): 280-289, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31141436

ABSTRACT

Medial knee loading during stair negotiation in individuals with medial knee osteoarthritis, has only been reported in terms of joint moments, which may underestimate the knee loading. This study assessed knee contact forces (KCF) and contact pressures during different stair negotiation strategies. Motion analysis was performed in five individuals with medial knee osteoarthritis (52.8±11.0 years) and eight healthy subjects (51.0±13.4 years) while ascending and descending a staircase. KCF and contact pressures were calculated using a multi-body knee model while performing step-over-step at controlled and self-selected speed, and step-by-step strategies. At controlled speed, individuals with osteoarthritis showed decreased peak KCF during stair ascent but not during stair descent. Osteoarthritis patients showed higher trunk rotations in frontal and sagittal planes than controls. At lower self-selected speed, patients also presented reduced medial KCF during stair descent. While performing step-by-step, medial contact pressures decreased in osteoarthritis patients during stair descent. Osteoarthritis patients reduced their speed and increased trunk flexion and lean angles to reduce KCF during stair ascent. These trunk changes were less safe during stair descent where a reduced speed was more effective. Individuals should be recommended to use step-over-step during stair ascent and step-by-step during stair descent to reduce medial KCF.


Subject(s)
Osteoarthritis, Knee/physiopathology , Stair Climbing/physiology , Walking Speed/physiology , Activities of Daily Living , Biomechanical Phenomena , Disability Evaluation , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pain Measurement , Pilot Projects
2.
PLoS One ; 12(11): e0187583, 2017.
Article in English | MEDLINE | ID: mdl-29117248

ABSTRACT

This study evaluates knee joint loading during gait and step-up-and-over tasks in control subjects, subjects with early knee OA and those with established knee OA. Thirty-seven subjects with varying degrees of medial compartment knee OA severity (eighteen with early OA and sixteen with established OA), and nineteen healthy controls performed gait and step-up-and-over tasks. Knee joint moments, contact forces (KCF), the magnitude of contact pressures and center of pressure (CoP) location were analyzed for the three groups for both activities using a multi-body knee model with articular cartilage contact, 14 ligaments, and six degrees of freedom tibiofemoral and patellofemoral joints. During gait, the first peak of the medial KCF was significantly higher for patients with early knee OA (p = 0.048) and established knee OA (p = 0.001) compared to control subjects. Furthermore, the medial contact pressure magnitudes and CoP location were significantly different in both groups of patients compared to controls. Knee rotation moments (KRMs) and external rotation angles were significantly higher during early stance in both patient groups (p < 0.0001) compared to controls. During step-up-and-over, there was a high variability between the participants and no significant differences in KCF were observed between the groups. Knee joint loading and kinematics were found to be altered in patients with early knee OA only during gait. This is an indication that an excessive medial KCF and altered loading location, observed in these patients, is a contributor to early progression of knee OA.


Subject(s)
Gait/physiology , Knee Joint/physiopathology , Osteoarthritis, Knee/physiopathology , Task Performance and Analysis , Adult , Aged , Biomechanical Phenomena , Female , Humans , Ligaments/physiopathology , Middle Aged , Models, Biological , Weight-Bearing/physiology
3.
Int Tinnitus J ; 19(2): 39-46, 2015.
Article in English | MEDLINE | ID: mdl-27186931

ABSTRACT

INTRODUCTION: Tinnitus is an auditory sensation whose source comes from external stimulus to the body. All studies that can help people with this disorder are very imperative. OBJECTIVE: This study investigates the cochlear function in patients with tinnitus, using Distortion Products Otoacoustic Emissions (DPOAE). MATERIAL AND METHODS: Ears where the subjects referred to feel the tinnitus were considered for the study group while other ears without this sensation of tinnitus acted as a control group. Fifty subjects suffering from unilateral or bilateral tinnitus with normal hearing sensitivity or mild hearing loss were recruited. RESULTS AND CONCLUSIONS: Where comparing the control and study group, the highest percentage of cases of DPOAE detected was in the control group, although these differences were not statistically significant. When the analyzed frequency is the same as the tinnitus frequency, the prevalence of detected DPOAE is in tinnitus ears (50.0 %). In ears where tinnitus was not perceived (73.5 %) a p value of 0.024 (< 0.05) was found, which means that the undetected DPOAE could be influenced by tinnitus. Based on the results, tinnitus might not be caused by changes in the outer hair cells but seems to be affected by that.

4.
J Biomech ; 43(3): 477-84, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20004900

ABSTRACT

Strain shielding, a mechanical effect occurring in structures combining stiff with more flexible materials, is considered to lead to a reduction of density in bone surrounding the implant. This effect can be related to the weakness of the implant fixation, which can promote implant loosening. Several studies describe a significant decrease in postoperative bone mineral density adjacent to joint implants, which can compromise their long-term fixation. The aim of the present study was to quantify the strain shielding effect on the distal femur after patellofemoral arthroplasty. For this purpose three activities of daily living were considered: level walking, stair climbing and deep bending at different angles of knee flexion. To determine the strain shielding effect, cortical bone strains were measured experimentally with triaxial strain gauges in synthetic femurs before and after patellofemoral arthroplasty for each of the different daily activities. The results showed that the patellofemoral arthroplasty in general reduced the strains in the medial and distal regions of the femur when deep bending activity occurred, consequently, strain shielding in these regions, with strain decreases of -72.0% and -67.5% were measured. On the other side, higher values of strain were found in the anterior region after patellofemoral replacement for this activity with an increase of +182.0%. The occurrence of strain shielding seems to be more significant when the angle of knee flexion and applied load increases. Strain shielding and over-loading may have relevant effects on bone remodeling surrounding the patellofemoral implant, suggesting a potential effect of later bone resorption in the medial and distal femur regions in case of regular deep bending activity.


Subject(s)
Activities of Daily Living , Arthroplasty/methods , Femur/physiology , Models, Biological , Motor Activity/physiology , Patellofemoral Joint/physiology , Patellofemoral Joint/surgery , Prostheses and Implants , Arthroplasty/instrumentation , Elastic Modulus , Humans , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...