Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(32): 17936-17944, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37540829

ABSTRACT

Catalytic hydrogenolysis of polyolefins into valuable liquid, oil, or wax-like hydrocarbon chains for second-life applications is typically accompanied by the hydrogen-wasting co-formation of low value volatiles, notably methane, that increase greenhouse gas emissions. Catalytic sites confined at the bottom of mesoporous wells, under conditions in which the pore exerts the greatest influence over the mechanism, are capable of producing less gases than unconfined sites. A new architecture was designed to emphasize this pore effect, with the active platinum nanoparticles embedded between linear, hexagonal mesoporous silica and gyroidal cubic MCM-48 silica (mSiO2/Pt/MCM-48). This catalyst deconstructs polyolefins selectively into ∼C20-C40 paraffins and cleaves C-C bonds at a rate (TOF = 4.2 ± 0.3 s-1) exceeding that of materials lacking these combined features while generating negligible volatile side products including methane. The time-independent product distribution is consistent with a processive mechanism for polymer deconstruction. In contrast to time- and polymer length-dependent products obtained from non-porous catalysts, mSiO2/Pt/MCM-48 yields a C28-centered Gaussian distribution of waxy hydrocarbons from polyolefins of varying molecular weight, composition, and physical properties, including low-density polyethylene, isotactic polypropylene, ultrahigh-molecular-weight polyethylene, and mixtures of multiple, post-industrial polyolefins. Coarse-grained simulation reveals that the porous-core architecture enables the paraffins to diffuse away from the active platinum site, preventing secondary reactions that produce gases.

2.
ACS Appl Mater Interfaces ; 15(22): 27369-27379, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37219439

ABSTRACT

The mesoporous silica shell coating hydrogenolysis nano-catalysts alters the molecular weight distributions of cleaved polymer chains compared to catalysts without a shell. The shell, composed of radially aligned narrow cylindrical nanopores, reduces the formation of low-valued gaseous products and increases the median molecular weight of the product, thus enhancing the value of the products for polymer upcycling. To understand the role of the mesoporous shell, we have studied the spatial distribution of polystyrene chains, used as a model polymer, in the nanochannels in both the melt phase and solution phase. In the melt, we observed from small-angle X-ray scattering experiments that the infiltration rate of the polymer into the nanochannels is inversely proportional to the molecular weight, which is consistent with theory. In theta solution experiments using UV-vis spectroscopy, we found that the shell significantly enhances polymer adsorption compared to nanoparticles without pores. In addition, the degree of polymer adsorption is not a monotonic function of molecular weight but initially increases with the molecular weight before eventually decreasing. The molecular weight for the peak adsorption increases with the pore diameter. This adsorption behavior is rationalized as resulting from a balance between the mixing entropy gain by surface adsorption and the conformational entropy penalty incurred by chains confined in the nanochannels. The spatial distribution of polymer chains in the nanochannels is visualized by energy-dispersive X-ray spectroscopy (EDX), and inverse Abel-transformed data reveals a less uniform polymer distribution along the primary pore axis for longer chains.

3.
ACS Macro Lett ; 12(2): 189-194, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36693211

ABSTRACT

The chemical upcycling of plastic waste to valuable liquid products requires catalytic cleavage architectures that afford control over the resulting product distributions. Recently, a catalyst was synthesized in which polymer chains are cleaved at the bottoms of pores to yield a narrow distribution of alkane products. An attractive feature of this architecture is the ability to modulate the product distribution by tuning physical parameters like the diameter of the pore. Understanding how such parameters affect product distributions is an important requirement of further synthetic improvements. We demonstrate that the pore diameter controls the products of the cleavage reaction via two distinct mechanisms. Our coarse-grained, particle-based simulations yield insight into the interplay of chain cleavage and pore residence times and show that the pore size can bias which bonds along a chain are cleaved.

SELECTION OF CITATIONS
SEARCH DETAIL
...