Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28533375

ABSTRACT

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Subject(s)
Huntington Disease/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Adult , Aged , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Female , HEK293 Cells , Humans , Huntington Disease/genetics , Kelch-Like ECH-Associated Protein 1/chemistry , MPTP Poisoning/metabolism , MPTP Poisoning/prevention & control , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Middle Aged , NF-E2-Related Factor 2/chemistry , Neural Stem Cells/metabolism , Neuroprotective Agents/pharmacology , Protein Conformation/drug effects , Rats , Signal Transduction
2.
Cell Chem Biol ; 23(7): 849-861, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27427231

ABSTRACT

There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.


Subject(s)
Disease Models, Animal , Huntington Disease/drug therapy , NF-E2-Related Factor 2/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Sirtuin 2/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/therapeutic use , Animals , Cell Line , Dose-Response Relationship, Drug , Drosophila , Huntington Disease/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Rats , Sirtuin 2/deficiency , Sirtuin 2/metabolism , Structure-Activity Relationship , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...