Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5984, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013946

ABSTRACT

Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (MV) has two intact Mdmd copies in a palindrome. M on chromosome III (MIII) has tandem duplications containing 88 Mdmd copies (only one intact) and various repeats, including repeats that are XY-prevalent. M on chromosome II (MII) and the Y (MY) share MIII-like architecture, but with fewer repeats. MY additionally shares MV-specific sequence arrangements. Based on these data and karyograms using two probes, one derives from MIII and one Mdmd-specific, we infer evolutionary histories of polymorphic M-loci, which have arisen from unique translocations of Mdmd, embedded in larger DNA fragments, and diverged independently into regions of varying complexity.


Subject(s)
Evolution, Molecular , Houseflies , Animals , Male , Houseflies/genetics , Y Chromosome/genetics , Sex Determination Processes/genetics , Chromosomes, Insect/genetics , Genetic Loci , Female
2.
Genome ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722238

ABSTRACT

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.

3.
Integr Comp Biol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637295

ABSTRACT

Organisms produce antimicrobial peptides (AMPs) either in response to infection (induced) or continuously (constitutively) to combat microbes encountered during normal trophic activities and/or through pathogenic infections. The expression of AMPs is tightly regulated often with specificity to particular tissues or developmental stages. As a result, AMPs face varying selective pressures based on the microbes the organism's tissue or developmental stage encounters. Here, we analyzed the evolution and developmental-specific expression of Defensins, which are ancient AMPs in insects, in the stable fly (Stomoxys calcitrans). Stable fly larvae inhibit microbe-rich environments, whereas adult flies, as blood-feeders, experience comparatively fewer encounters with diverse microbial communities. Using existing RNA-seq datasets, we identified six Defensins that were only expressed in larvae (larval Defensins) and five that were not expressed in larvae (non-larval Defensins). Each of the non-larval Defensins was expressed in at least one adult tissue sample. Half of the larval Defensins were induced by mating or feeding in adults, and all three of the induced Defensins were located downstream of canonical binding sites for an Imd transcription factor involved in the highly conserved NF-κB signaling that regulates induction of AMPs. The larval and non-larval Defensins were located in distinct genomic regions, and the amino acid sequences of the larval Defensins formed a monophyletic clade. There were more amino acid substitutions across non-larval Defensins, with multiple genes losing a highly conserved furin cleavage site thought to be required for the removal of the amino terminus from the mature Defensin domain. However, larval Defensins had a higher proportion of radical amino acid substitutions, altering amino acid size and polarity. Our results reveal insights into the developmental stage-specific regulation of AMPs, and they suggest different regulatory regimes impose unique selection pressures on AMPs, possibly as a result of variation in exposure to microbial communities across development.

4.
Arch Insect Biochem Physiol ; 114(3): e22049, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37608635

ABSTRACT

The house fly, Musca domestica, is a pest of livestock, transmits pathogens of human diseases, and is a model organism in multiple biological research areas. The first house fly genome assembly was published in 2014 and has been of tremendous use to the community of house fly biologists, but that genome is discontiguous and incomplete by contemporary standards. To improve the house fly reference genome, we sequenced, assembled, and annotated the house fly genome using improved techniques and technologies that were not available at the time of the original genome sequencing project. The new genome assembly is substantially more contiguous and complete than the previous genome. The new genome assembly has a scaffold N50 of 12.46 Mb, which is a 50-fold improvement over the previous assembly. In addition, the new genome assembly is within 1% of the estimated genome size based on flow cytometry, whereas the previous assembly was missing nearly one-third of the predicted genome sequence. The improved genome assembly has much more contiguous scaffolds containing large gene families. To provide an example of the benefit of the new genome, we used it to investigate tandemly arrayed immune gene families. The new contiguous assembly of these loci provides a clearer picture of the regulation of the expression of immune genes, and it leads to new insights into the selection pressures that shape their evolution.

5.
J Evol Biol ; 35(12): 1601-1618, 2022 12.
Article in English | MEDLINE | ID: mdl-35950939

ABSTRACT

Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.


Subject(s)
Selection, Genetic , Sex Chromosomes , Animals , Male , Female , Sex Chromosomes/genetics , Sex Determination Processes , Inheritance Patterns , Phenotype , Evolution, Molecular
6.
G3 (Bethesda) ; 12(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-35792851

ABSTRACT

Sex chromosomes frequently differ from the autosomes in the frequencies of genes with sexually dimorphic or tissue-specific expression. Multiple hypotheses have been put forth to explain the unique gene content of the X chromosome, including selection against male-beneficial X-linked alleles, expression limits imposed by the haploid dosage of the X in males, and interference by the dosage compensation complex on expression in males. Here, we investigate these hypotheses by examining differential gene expression in Drosophila melanogaster following several treatments that have widespread transcriptomic effects: bacterial infection, viral infection, and abiotic stress. We found that genes that are induced (upregulated) by these biotic and abiotic treatments are frequently under-represented on the X chromosome, but so are those that are repressed (downregulated) following treatment. We further show that whether a gene is bound by the dosage compensation complex in males can largely explain the paucity of both up- and downregulated genes on the X chromosome. Specifically, genes that are bound by the dosage compensation complex, or close to a dosage compensation complex high-affinity site, are unlikely to be up- or downregulated after treatment. This relationship, however, could partially be explained by a correlation between differential expression and breadth of expression across tissues. Nonetheless, our results suggest that dosage compensation complex binding, or the associated chromatin modifications, inhibit both up- and downregulation of X chromosome gene expression within specific contexts, including tissue-specific expression. We propose multiple possible mechanisms of action for the effect, including a role of Males absent on the first, a component of the dosage compensation complex, as a dampener of gene expression variance in both males and females. This effect could explain why the Drosophila X chromosome is depauperate in genes with tissue-specific or induced expression, while the mammalian X has an excess of genes with tissue-specific expression.


Subject(s)
Drosophila Proteins , Genes, X-Linked , Animals , Dosage Compensation, Genetic , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Male , Mammals/genetics , Sex Chromosomes , X Chromosome/genetics
7.
Insect Mol Biol ; 31(6): 782-797, 2022 12.
Article in English | MEDLINE | ID: mdl-35875866

ABSTRACT

Insects possess both infection-induced and constitutively expressed innate immune defences. Some effectors, such as lysozymes and antimicrobial peptides (AMPs), are constitutively expressed in flies, but expression patterns vary across tissues and species. The house fly (Musca domestica L.) has an impressive immune repertoire, with more effector genes than any other flies. We used RNA-seq to explore both constitutive and induced expression of immune effectors in flies. House flies were fed either Pseudomonas aeruginosa or Escherichia coli, or sterile control broth, and gene expression in the gut and carcass was analysed 4 h post-feeding. Flies fed either bacterium did not induce AMP expression, but some lysozyme and AMP genes were constitutively expressed. Prior transcriptome data from flies injected with bacteria also were analysed, and these constitutively expressed genes differed from those induced by bacterial injection. Binding sites for the transcription factor Myc were enriched upstream of constitutively expressed AMP genes, while upstream regions of induced AMPs were enriched for NF-κB binding sites resembling those of the Imd-responsive transcription factor Relish. Therefore, we identified at least two expression repertoires for AMPs in the house fly: constitutively expressed genes that may be regulated by Myc, and induced AMPs likely regulated by Relish.


Subject(s)
Houseflies , Animals , Bacteria , Gene Expression Regulation , Houseflies/genetics , Pseudomonas aeruginosa , Transcription Factors/genetics
8.
Aging Cell ; 21(2): e13542, 2022 02.
Article in English | MEDLINE | ID: mdl-35072344

ABSTRACT

Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs.


Subject(s)
Aging , Longevity , Aging/genetics , Animals , Female , Longevity/genetics , Male , Sex Characteristics
9.
Evol Lett ; 5(5): 495-506, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34621536

ABSTRACT

Selection pressures can vary within localized areas and across massive geographical scales. Temperature is one of the best studied ecologically variable abiotic factors that can affect selection pressures across multiple spatial scales. Organisms rely on physiological (thermal tolerance) and behavioral (thermal preference) mechanisms to thermoregulate in response to environmental temperature. In addition, spatial heterogeneity in temperatures can select for local adaptation in thermal tolerance, thermal preference, or both. However, the concordance between thermal tolerance and preference across genotypes and sexes within species and across populations is greatly understudied. The house fly, Musca domestica, is a well-suited system to examine how genotype and environment interact to affect thermal tolerance and preference. Across multiple continents, house fly males from higher latitudes tend to carry the male-determining gene on the Y chromosome, whereas those from lower latitudes usually have the male determiner on the third chromosome. We tested whether these two male-determining chromosomes differentially affect thermal tolerance and preference as predicted by their geographical distributions. We identify effects of genotype and developmental temperature on male thermal tolerance and preference that are concordant with the natural distributions of the chromosomes, suggesting that temperature variation across the species range contributes to the maintenance of the polymorphism. In contrast, female thermal preference is bimodal and largely independent of congener male genotypes. These sexually dimorphic thermal preferences suggest that temperature-dependent mating dynamics within populations could further affect the distribution of the two chromosomes. Together, the differences in thermal tolerance and preference across sexes and male genotypes suggest that different selection pressures may affect the frequencies of the male-determining chromosomes across different spatial scales.

10.
Mol Ecol ; 30(22): 5704-5720, 2021 11.
Article in English | MEDLINE | ID: mdl-34449942

ABSTRACT

Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto-sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto-sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female-determiner on one of the chromosomes as well. The two most common male-determining proto-Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature-dependent fitness effects could be manifested through temperature-dependent gene expression differences across proto-Y chromosome genotypes. These gene expression differences may be the result of cis regulatory variants that affect the expression of genes on the proto-sex chromosomes, or trans effects of the proto-Y chromosomes on genes elswhere in the genome. We used RNA-seq to identify genes whose expression depends on proto-Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature-dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time-point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto-Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype-by-temperature interactions on expression were not enriched on the proto-sex chromosomes. Moreover, there was no evidence that temperature-dependent expression is driven by chromosome-wide cis-regulatory divergence between the proto-Y and proto-X alleles. Therefore, if temperature-dependent gene expression is responsible for differences in phenotypes and fitness of proto-Y genotypes across house fly populations, these effects are driven by a small number of temperature-dependent alleles on the proto-Y chromosomes that may have trans effects on the expression of genes on other chromosomes.


Subject(s)
Houseflies , Animals , Female , Gene Expression , Houseflies/genetics , Male , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Temperature , Y Chromosome
12.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-33930135

ABSTRACT

In species with polygenic sex determination (PSD), multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that PSD is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider PSD systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain PSD under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain PSD than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain PSD tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain PSD tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that PSD will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.


Subject(s)
Genetics, Population , Multifactorial Inheritance , Female , Male , Animals , Multifactorial Inheritance/genetics , Y Chromosome , Sex Chromosomes/genetics , Alleles , Selection, Genetic
13.
BMC Biol ; 19(1): 41, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33750380

ABSTRACT

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Subject(s)
Genome, Insect , Host-Parasite Interactions/genetics , Insect Control , Muscidae/genetics , Animals , Reproduction/genetics
14.
Mol Biol Evol ; 38(3): 876-890, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32986826

ABSTRACT

Guenons (tribe Cercopithecini) are the most widely distributed nonhuman primate in the tropical forest belt of Africa and show considerable phenotypic, taxonomic, and ecological diversity. However, genomic information for most species within this group is still lacking. Here, we present a high-quality de novo genome (total 2.90 Gb, contig N50 equal to 22.7 Mb) of the mona monkey (Cercopithecus mona), together with genome resequencing data of 13 individuals sampled across Nigeria. Our results showed differentiation between populations from East and West of the Niger River ∼84 ka and potential ancient introgression in the East population from other mona group species. The PTPRK, FRAS1, BNC2, and EDN3 genes related to pigmentation displayed signals of introgression in the East population. Genomic scans suggest that immunity genes such as AKT3 and IL13 (possibly involved in simian immunodeficiency virus defense), and G6PD, a gene involved in malaria resistance, are under positive natural selection. Our study gives insights into differentiation, natural selection, and introgression in guenons.


Subject(s)
Cercopithecus/genetics , Genetic Introgression , Genetic Speciation , Genome , Selection, Genetic , Animals , Female , Immunity/genetics
15.
Mol Biol Evol ; 38(2): 606-618, 2021 01 23.
Article in English | MEDLINE | ID: mdl-32986844

ABSTRACT

X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene's function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.


Subject(s)
Biological Evolution , Houseflies/genetics , Sex Chromosomes , Animals , Female , Gene Expression , Houseflies/metabolism , Male , Testis/metabolism
16.
Bioessays ; 42(9): e1900212, 2020 09.
Article in English | MEDLINE | ID: mdl-32648258

ABSTRACT

Sex chromosomes can differ between species as a result of evolutionary turnover, a process that can be driven by evolution of the sex determination pathway. Canonical models of sex chromosome turnover hypothesize that a new master sex determining gene causes an autosome to become a sex chromosome or an XY chromosome pair to switch to a ZW pair (or vice versa). Here, a novel paradigm for the evolution of sex determination and sex chromosomes is presented, in which there is an evolutionary transition in the master sex determiner, but the X chromosome remains unchanged. There are three documented examples of the novel paradigm, and it is hypothesized that a similar process could happen in a ZW sex chromosome system. Three other taxa are also identified where the novel paradigm may have occurred, and how it could be distinguished from canonical trajectories in these and additional taxa is also described.


Subject(s)
Sex Chromosomes , Sex Determination Processes , Evolution, Molecular , Sex Chromosomes/genetics , Sex Determination Processes/genetics , X Chromosome
17.
G3 (Bethesda) ; 10(4): 1341-1352, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32051221

ABSTRACT

Sex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. Population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex chromosomes are divergent in some taxa and conserved in others. Addressing this question requires comparing closely related taxa with conserved and divergent sex chromosomes to identify biological features that could explain these differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic and transcriptomic sequence data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could identify features of muscid genomes that promote sex chromosome divergence.


Subject(s)
Houseflies , Muscidae , Animals , Genome , Muscidae/genetics , Sex Chromosomes/genetics
18.
BMC Biol ; 17(1): 100, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31806031

ABSTRACT

BACKGROUND: Sex chromosome evolution is a dynamic process that can proceed at varying rates across lineages. For example, different chromosomes can be sex-linked between closely related species, whereas other sex chromosomes have been conserved for > 100 million years. Cases of long-term sex chromosome conservation could be informative of factors that constrain sex chromosome evolution. Cytological similarities between the X chromosomes of the German cockroach (Blattella germanica) and most flies suggest that they may be homologous-possibly representing an extreme case of long-term conservation. RESULTS: To test the hypothesis that the cockroach and fly X chromosomes are homologous, we analyzed whole-genome sequence data from cockroaches. We found evidence in both sequencing coverage and heterozygosity that a significant excess of the same genes are on both the cockroach and fly X chromosomes. We also present evidence that the candidate X-linked cockroach genes may be dosage compensated in hemizygous males. Consistent with this hypothesis, three regulators of transcription and chromatin on the fly X chromosome are conserved in the cockroach genome. CONCLUSIONS: Our results support our hypothesis that the German cockroach shares the same X chromosome as most flies. This may represent the convergent evolution of the X chromosome in the lineages leading to cockroaches and flies. Alternatively, the common ancestor of most insects may have had an X chromosome that resembled the extant cockroach and fly X. Cockroaches and flies diverged ∼ 400 million years ago, which would be the longest documented conservation of a sex chromosome. Cockroaches and flies have different mechanisms of sex determination, raising the possibility that the X chromosome was conserved despite the evolution of the sex determination pathway.


Subject(s)
Blattellidae/genetics , Drosophila melanogaster/genetics , X Chromosome/genetics , Animals
19.
Genome Biol ; 20(1): 187, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477173

ABSTRACT

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Subject(s)
Genome, Insect , Genomics , Insect Vectors/genetics , Trypanosoma/parasitology , Tsetse Flies/genetics , Animals , DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Female , Gene Expression Regulation , Genes, Insect , Genes, X-Linked , Geography , Insect Proteins/genetics , Male , Mutagenesis, Insertional/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Sequence Homology, Amino Acid , Synteny/genetics , Wolbachia/genetics
20.
Genetics ; 213(1): 313-327, 2019 09.
Article in English | MEDLINE | ID: mdl-31315889

ABSTRACT

Sex determination, the developmental process by which organismal sex is established, evolves fast, often due to changes in the master regulators at the top of the pathway. Additionally, in species with polygenic sex determination, multiple different master regulators segregate as polymorphisms. Understanding the forces that maintain polygenic sex determination can be informative of the factors that drive the evolution of sex determination. The house fly, Musca domestica, is a well-suited model to those ends because natural populations harbor male-determining loci on each of the six chromosomes and a biallelic female determiner. To investigate how natural selection maintains polygenic sex determination in the house fly, we assayed the phenotypic effects of proto-Y chromosomes by performing mRNA-sequencing experiments to measure gene expression in house fly males carrying different proto-Y chromosomes. We find that the proto-Y chromosomes have similar effects as a nonsex-determining autosome. In addition, we created sex-reversed males without any proto-Y chromosomes and they had nearly identical gene expression profiles as genotypic males. Therefore, the proto-Y chromosomes have a minor effect on male gene expression, consistent with previously described minimal X-Y sequence differences. Despite these minimal differences, we find evidence for a disproportionate effect of one proto-Y chromosome on male-biased expression, which could be partially responsible for fitness differences between males with different proto-Y chromosome genotypes. Therefore our results suggest that, if natural selection maintains polygenic sex determination in house fly via gene expression differences, the phenotypes under selection likely depend on a small number of genetic targets.


Subject(s)
Houseflies/genetics , Multifactorial Inheritance , Selection, Genetic , Sex Determination Processes , Y Chromosome/genetics , Animals , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...