Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(8): 2935-2944, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718402

ABSTRACT

Human antigen R (HuR) is a key regulator of cellular mRNAs containing adenylate/uridylate-rich elements (AU-rich elements; AREs). These are a major class of cis elements within 3' untranslated regions, targeting these mRNAs for rapid degradation. HuR contains three RNA recognition motifs (RRMs): a tandem RRM1 and 2, followed by a flexible linker and a C-terminal RRM3. While RRM1 and 2 are structurally characterized, little is known about RRM3. Here we present a 1.9-Å-resolution crystal structure of RRM3 bound to different ARE motifs. This structure together with biophysical methods and cell-culture assays revealed the mechanism of RRM3 ARE recognition and dimerization. While multiple RNA motifs can be bound, recognition of the canonical AUUUA pentameric motif is possible by binding to two registers. Additionally, RRM3 forms homodimers to increase its RNA binding affinity. Finally, although HuR stabilizes ARE-containing RNAs, we found that RRM3 counteracts this effect, as shown in a cell-based ARE reporter assay and by qPCR with native HuR mRNA targets containing multiple AUUUA motifs, possibly by competing with RRM12.


Subject(s)
ELAV Proteins/chemistry , ELAV-Like Protein 1/chemistry , RNA Recognition Motif/genetics , RNA-Binding Proteins/chemistry , 3' Untranslated Regions , AU Rich Elements/genetics , Crystallography, X-Ray , Dimerization , ELAV-Like Protein 1/genetics , Humans , Magnetic Resonance Spectroscopy , RNA-Binding Proteins/genetics , Ribonucleoside Diphosphate Reductase/chemistry , Tumor Suppressor Proteins/chemistry
2.
J Cell Biol ; 213(2): 173-84, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27114500

ABSTRACT

Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery.


Subject(s)
Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Exosomes/metabolism , Pseudopodia/physiology , Biological Transport , Endoplasmic Reticulum/ultrastructure , Endosomes/ultrastructure , Exosomes/physiology , Exosomes/ultrastructure , HEK293 Cells , Humans , Microscopy, Electron, Scanning , Pseudopodia/ultrastructure
3.
Nanomedicine ; 11(4): 879-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25659648

ABSTRACT

Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading to a different in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs. FROM THE CLINICAL EDITOR: Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-centrifugation (UC) for EV recovery.


Subject(s)
Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/ultrastructure , Chromatography, Gel , HEK293 Cells , Humans , Ultrafiltration
4.
EMBO J ; 32(8): 1115-27, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23511973

ABSTRACT

Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing.


Subject(s)
Endoplasmic Reticulum/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Argonaute Proteins/analysis , DEAD-box RNA Helicases/analysis , Endoplasmic Reticulum/chemistry , HeLa Cells , Humans , Immunoprecipitation , RNA-Binding Proteins/analysis , Ribonuclease III/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...