Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4047, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899021

ABSTRACT

Melioidosis is an endemic disease in numerous tropical regions. Additionally, the bacterium that causes melioidosis, Burkholderia pseudomallei, has potential to be used as a biological weapon. Therefore, development of effective and affordable medical countermeasures to serve regions affected by the disease and to have medical countermeasures available in the event of a bioterrorism attack remains critical. The current study evaluated the efficacy of eight distinct acute phase ceftazidime treatment regimens administered therapeutically in the murine model. At the conclusion of the treatment period, survival rates were significantly greater in several of the treated groups when compared to the control group. Pharmacokinetics of a single dose of ceftazidime were examined at 150 mg/kg, 300 mg/kg, and 600 mg/kg and were compared to an intravenous clinical dose administered at 2000 mg every eight hours. The clinical dose has an estimated 100% fT > 4*MIC which exceeded the highest murine dose of 300 mg/kg every six hours at 87.2% fT > 4*MIC. Based upon survival at the end of the treatment regimen and supplemented by pharmacokinetic modeling, a daily dose of 1200 mg/kg of ceftazidime, administered every 6 h at 300 mg/kg, provides protection in the acute phase of inhalation melioidosis in the murine model.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Animals , Mice , Ceftazidime/pharmacology , Melioidosis/microbiology , Disease Models, Animal , Aerosols/pharmacology , Anti-Bacterial Agents/pharmacology
2.
mBio ; 13(3): e0093122, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35546539

ABSTRACT

Inhalational anthrax is a fatal infectious disease. Rapid and effective treatment is critically dependent on early and accurate diagnosis. Blood culture followed by identification and confirmation may take days to provide clinically relevant information. In contrast, immunoassay for a shed antigen, the capsular polypeptide gamma-d-polyglutamate (γDPGA), can provide rapid results at the point of care. In this study, a lateral flow immunoassay for γDPGA was evaluated in a robust nonhuman primate model of inhalational anthrax. The results showed that the time to a positive result with the rapid test using either serum or blood as a clinical specimen was similar to the time after infection when a blood culture became positive. In vitro testing showed that the test was equally sensitive with cultures of the three major clades of Bacillus anthracis. Cultures from other Bacillus spp. that are known to produce γDPGA also produced positive results. The test was negative with human sera from 200 normal subjects and 45 subjects with culture-confirmed nonanthrax bacterial or fungal sepsis. Taken together, the results showed that immunoassay for γDPGA is an effective surrogate for blood culture in a relevant cynomolgus monkey model of inhalational anthrax. The test would be a valuable aid in early diagnosis of anthrax, which is critical for rapid intervention and a positive outcome. Use of the test could facilitate triage of patients with signs and symptoms of anthrax in a mass-exposure incident and in low-resource settings where laboratory resources are not readily available. IMPORTANCE Patient outcome in anthrax is critically dependent on early diagnosis followed by effective treatment. We describe a rapid lateral flow immunoassay that detects capsular antigen of Bacillus anthracis that is shed into blood during infection. The test was evaluated in a robust cynomolgus monkey model of inhalational anthrax. Rapid detection of capsular antigen is an effective surrogate for the time-consuming and laboratory-intensive diagnosis by blood culture, direct fluorescent antibody staining, or other molecular testing. The test can be performed at the point of patient contact, is rapid and inexpensive, and can be used by individuals with minimal training.


Subject(s)
Anthrax , Bacillus anthracis , Animals , Anthrax/diagnosis , Antigens, Bacterial , Humans , Immunoassay/methods , Macaca fascicularis , Respiratory Tract Infections
3.
Article in English | MEDLINE | ID: mdl-33593844

ABSTRACT

Bacillus anthracis and Yersinia pestis, causative pathogens for anthrax and plague, respectively, along with Burkholderia mallei and B. pseudomallei are potential bioterrorism threats. Tebipenem pivoxil hydrobromide (TBP HBr, formerly SPR994), is an orally available prodrug of tebipenem, a carbapenem with activity versus multidrug-resistant (MDR) gram-negative pathogens, including quinolone-resistant and extended-spectrum-ß-lactamase-producing Enterobacterales. We evaluated the in vitro activity and in vivo efficacy of tebipenem against biothreat pathogens. Tebipenem was active in vitro against 30-strain diversity sets of B. anthracis, Y. pestis, B. mallei, and B. pseudomallei with minimum inhibitory concentration (MIC) values of 0.001 - 0.008 µg/ml for B. anthracis, ≤0.0005 - 0.03 µg/ml for Y. pestis, 0.25 - 1 µg/ml for B. mallei, and 1 - 4 µg/ml for B. pseudomallei In a B. anthracis murine model, all control animals died within 52 h post challenge. The survival rates in the groups treated with tebipenem were 75% and 73% when dosed at 12 h and 24 h post challenge, respectively. The survival rates in the positive control groups treated with ciprofloxacin were 75% and when dosed 12 h and 25% when dosed 24 h post challenge, respectively. Survival rates were significantly (p=0.0009) greater in tebipenem groups treated at 12 h and 24 h post challenge and in the ciprofloxacin group 12 h post-challenge vs. the vehicle-control group. For Y. pestis, survival rates for all animals in the tebipenem and ciprofloxacin groups were significantly (p<0.0001) greater than the vehicle-control group. These results support further development of tebipenem for treating biothreat pathogens.

4.
Virol J ; 14(1): 135, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28728590

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) is transmitted via mosquito bite and potentially by aerosol, causing chikungunya fever and arthritic disease in humans. There are currently no licensed vaccines or antiviral therapeutics to protect against CHIKV infection in humans. Animal models recapitulating human disease, especially for transmission by aerosol, are needed for licensure of such medical countermeasures. METHODS: Cynomolgus macaques (CMs) were challenged by intradermal (ID) inoculation or exposure to an aerosol containing CHIKV Ross strain at different target infectious doses (103-107 plaque forming units (PFU)). The clinical and virologic courses of disease were monitored up to 14 days post-exposure. RESULTS: ID infection of CMs led to overt clinical disease, detectable viremia, and increased blood markers of liver damage. Animals challenged by aerosol exhibited viremia and increased liver damage biomarkers with minimal observed clinical disease. All animals survived CHIKV challenge. CONCLUSIONS: We have described CHIKV infection in CMs following ID inoculation and, for the first time, infection by aerosol. Based on limited reported cases in the published literature, the aerosol model recapitulates the virologic findings of human infection via this route. The results of this study provide additional evidence for the potential use of CMs as a model for evaluating medical countermeasures against CHIKV.


Subject(s)
Aerosols , Chikungunya Fever/pathology , Chikungunya Fever/virology , Disease Models, Animal , Animals , Female , Injections, Intradermal , Macaca fascicularis , Male
5.
Antimicrob Agents Chemother ; 58(7): 3618-25, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24733473

ABSTRACT

Anthrax is an acute infectious disease caused by the spore-forming bacterium Bacillus anthracis. Timely administration of antibiotics approved for the treatment of anthrax disease may prevent associated morbidity and mortality. However, any delay in initiating antimicrobial therapy may result in increased mortality, as inhalational anthrax progresses rapidly to the toxemic phase of disease. An anthrax antitoxin, AVP-21D9, also known as Thravixa (fully human anthrax monoclonal antibody), is being developed as a therapeutic agent against anthrax toxemia. The efficacy of AVP-21D9 in B. anthracis-infected New Zealand White rabbits and in cynomolgus macaques was evaluated, and its safety and pharmacokinetics were assessed in healthy human volunteers. The estimated mean elimination half-life values of AVP-21D9 in surviving anthrax-challenged rabbits and nonhuman primates (NHPs) ranged from approximately 2 to 4 days and 6 to 11 days, respectively. In healthy humans, the mean elimination half-life was in the range of 20 to 27 days. Dose proportionality was observed for the maximum serum concentration (Cmax) of AVP-21D9 and the area under the concentration-time curve (AUC). In therapeutic efficacy animal models, treatment with AVP-21D9 resulted in survival of up to 92% of the rabbits and up to 67% of the macaques. Single infusions of AVP-21D9 were well tolerated in healthy adult volunteers across all doses evaluated, and no serious adverse events were reported. (This study has been registered at ClinicalTrials.gov under registration no. NCT01202695.).


Subject(s)
Anthrax/drug therapy , Anthrax/immunology , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Adolescent , Adult , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/pharmacology , Antigens, Bacterial/blood , Bacteremia/blood , Bacteremia/drug therapy , Broadly Neutralizing Antibodies , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Female , Humans , Macaca fascicularis , Male , Middle Aged , Rabbits , Young Adult
6.
Antimicrob Agents Chemother ; 57(11): 5684-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23979731

ABSTRACT

Bacillus anthracis toxins can be neutralized by antibodies against protective antigen (PA), a component of anthrax toxins. Anthrivig (human anthrax immunoglobulin), also known as AIGIV, derived from plasma of humans immunized with BioThrax (anthrax vaccine adsorbed), is under development for the treatment of toxemia following exposure to anthrax spores. The pharmacokinetics (PK) of AIGIV was assessed in naive animals and healthy human volunteers, and the efficacy of AIGIV was assessed in animals exposed via inhalation to aerosolized B. anthracis spores. In the clinical study, safety, tolerability, and PK were evaluated in three dose cohorts (3.5, 7.1, and 14.2 mg/kg of body weight of anti-PA IgG) with 30 volunteers per cohort. The elimination half-life of AIGIV in rabbits, nonhuman primates (NHPs), and humans following intravenous infusion was estimated to be approximately 4, 12, and 24 days, respectively, and dose proportionality was observed. In a time-based treatment study, AIGIV protected 89 to 100% of animals when administered 12 h postexposure; however, a lower survival rate of 39% was observed when animals were treated 24 h postexposure, underscoring the need for early intervention. In a separate set of studies, animals were treated on an individual basis upon detection of a clinical sign or biomarker of disease, namely, a significant increase in body temperature (SIBT) in rabbits and presence of PA in the serum of NHPs. In these trigger-based intervention studies, AIGIV induced up to 75% survival in rabbits depending on the dose and severity of toxemia at the time of treatment. In NHPs, up to 33% survival was observed in AIGIV-treated animals. (The clinical study has been registered at ClinicalTrials.gov under registration no. NCT00845650.).


Subject(s)
Anthrax Vaccines/administration & dosage , Anthrax/prevention & control , Antibodies, Bacterial/administration & dosage , Bacillus anthracis/drug effects , Immunoglobulins, Intravenous/pharmacokinetics , Respiratory Tract Infections/prevention & control , Spores, Bacterial/drug effects , Animals , Anthrax/immunology , Anthrax/microbiology , Anthrax/mortality , Anthrax Vaccines/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/isolation & purification , Antigens, Bacterial/blood , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacillus anthracis/pathogenicity , Bacterial Toxins/blood , Bacterial Toxins/immunology , Biomarkers/analysis , Double-Blind Method , Female , Half-Life , Humans , Immunoglobulins, Intravenous/immunology , Immunoglobulins, Intravenous/isolation & purification , Infusions, Intravenous , Macaca fascicularis , Male , Rabbits , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Spores, Bacterial/immunology , Spores, Bacterial/pathogenicity , Survival Analysis , Time Factors , Vaccination
7.
Clin Vaccine Immunol ; 19(11): 1765-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22956657

ABSTRACT

Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease progression, i.e., by blood culture (∼37 h postchallenge) and the presence of circulating protective antigen (PA) detected by electrochemiluminescence (ECL) ∼38 h postchallenge, whereas nonspecific clinical signs of disease, i.e., changes in body temperature, hematologic parameters (ca. 52 to 66 h), and clinical observations, were delayed. To determine whether the presentation of antigenemia (PA in the blood) was an appropriate trigger for therapeutic intervention, a monoclonal antibody specific for PA was administered to 12 additional animals after the circulating levels of PA were detected by ECL. Seventy-five percent of the monoclonal antibody-treated animals survived compared to 17% of the untreated controls, suggesting that intervention at the onset of antigenemia is an appropriate treatment trigger for this model. Moreover, the onset of antigenemia correlated with bacteremia, and NHPs were treated in a therapeutic manner. Interestingly, brain lesions were observed by histopathology in the treated nonsurviving animals, whereas this observation was absent from 90% of the nonsurviving untreated animals. Our results support the use of the cynomolgus macaque as an appropriate therapeutic animal model for assessing the efficacy of medical countermeasures developed against anthrax when administered after a confirmation of infection.


Subject(s)
Anthrax/pathology , Anthrax/therapy , Disease Models, Animal , Primate Diseases/pathology , Primate Diseases/therapy , Respiratory Tract Infections/pathology , Respiratory Tract Infections/therapy , Animals , Anthrax/diagnosis , Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antigens, Bacterial/blood , Bacterial Toxins/blood , Biomarkers/blood , Brain/pathology , Female , Guideline Adherence , Macaca fascicularis , Male , Primate Diseases/diagnosis , Respiratory Tract Infections/diagnosis , Survival Analysis , Time Factors , United States , United States Food and Drug Administration
8.
Clin Vaccine Immunol ; 19(9): 1517-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22837095

ABSTRACT

The development of an appropriate animal therapeutic model is essential to assess the potential efficacy of therapeutics for use in the event of a Bacillus anthracis exposure. We conducted a natural history study that showed New Zealand White rabbits exhibited a significant increase in body temperature (SIBT), changes in hematologic parameters, and increases in C-reactive protein and succumbed to disease with an average time to death of approximately 73 h following aerosol challenge with B. anthracis Ames spores. The SIBT was used as a trigger to treat with a fully human monoclonal antibody directed at protective antigen (PA). Ninety percent (9/10) of the treated rabbits survived the lethal inhalational challenge of B. anthracis. Further characterization investigated the protective window of opportunity for anti-PA antibody administration up to 12 h post-onset of SIBT. Eighty-three percent (5/6) of the rabbits treated at SIBT and 100% (6/6) of those treated at 6 h after SIBT survived challenge. Only 67% (4/6) of the rabbits treated at 12 h after SIBT survived. The increase in body temperature corresponded with both bacteremia and antigenemia (PA in the blood), indicating that SIBT is a suitable trigger to initiate treatment in a therapeutic model of inhalational anthrax.


Subject(s)
Anthrax/pathology , Anthrax/therapy , Bacillus anthracis/pathogenicity , Biomarkers , Fever/diagnosis , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antigens, Bacterial , Bacterial Toxins/antagonists & inhibitors , Blood Cells/physiology , C-Reactive Protein/analysis , Disease Models, Animal , Female , Immunotherapy/methods , Male , Rabbits , Survival Analysis , Time Factors
9.
Transplantation ; 79(1): 17-22, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15714164

ABSTRACT

BACKGROUND: FK778 is a malononitrilamide, a class of immune suppressive compounds with antiviral features and experimental activity in chronic rejection, a potentially interesting combination for organ transplantation. The goal of this project was to study the tolerability, immune suppressive efficacy, and anti-cytomegalovirus (CMV) activity of FK778 and to assess the in vivo relevance of its previously described inhibition of de novo pyrimidine synthesis. METHODS: Heart transplants were performed in rats (Brown Norway [BN] to Lewis) and treated with varying doses of FK778 or leflunomide for 28 days. At 28 days, at the time of rejection or at the death of the animal, the allograft and other vital organs were obtained for study by light microscopy and immunohistochemistry. In separate experiments, Lewis rats were given sublethal irradiation, inoculated with rat CMV (Maastricht strain), and treated with varying doses of FK778 and leflunomide. In both the transplant and CMV studies, IP uridine was given at 250 mg/kg to cohorts or animals receiving FK778 and leflunomide. RESULTS: FK778 controls acute rejection and inhibits CMV replication at 20 mg/kg but is toxic at 25 mg/kg. Toxicity is manifested as anemia, changes in hepatic and intestinal histology, and mortality. The toxicity but not the immune suppressive or antiviral efficacy, is reduced significantly by exogenous uridine administration. CONCLUSION: FK778 has both immune suppressive and antiviral activities, neither of which is entirely dependent on inhibition of pyrimidine synthesis. These, and other published observations, suggest that the antiviral activity and a considerable part of the efficacy of the malononitrilamide family of drugs is attributable to activities other than drug induced pyrimidine deficiency.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus Infections/drug therapy , Heart Transplantation , Immunosuppressive Agents/pharmacology , Isoxazoles/pharmacology , Alkynes , Animals , Body Weight/drug effects , Graft Rejection/prevention & control , Nitriles , Rats , Rats, Inbred BN , Transplantation, Homologous , Uridine/pharmacology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...